

Vertical distribution and reproductive aspects of caridean shrimps in the deep-water of the East Sea, Korea

Contents

Introduction - Distribution

Distribution may depend on a variety of environmental factor (Boschi, 2000).

Depth is a multicomponent factor related to the major biotic and abiotic gradients found in the ocean (Company and Sarda, 1997).

Introduction - Effects of depth

As their own reproductive strategy of each species, distribution will be able to vary according to sex and stage of development.

by depth

Sex ratio

As a function of depth reflects differential migration between sexes, related to egg incubation and hatching (Abello and Cartes, 1992).

Reproductive behaviour

Migration be related to the physiological demands for copulation and spawning (Castilho et al., 2008).

Purpose of this study

Shallow water

The wealth of information on the distribution

Deep water

Much less information on the distribution

The first aim of the present paper is to reveal the distribution pattern, as well as the differences in the size structure of their populations related to depth.

The other aim is to compare the reproductive traits of deep-sea shrimp through distributions among 4 species.

Characteristics of 4 species

Of 14 species (4 in the Hippolytidae, 3 in the Pandalidae and 7 in the Crangonidae) found in the study area the four dominant shrimps was used to examine (Kim and Kim, 1997; Cha et al., 2001).

Family Crangonidae Neocrangon communis (Rathbun, 1899)

Argis toyamaensis (Yokoya, 1933)

Family PandalidaePandalus eous Makarov, 1938

Family Hippolytidae *Eualus biunguis* (Rathbun, 1902)

Materials and Methods

Sampling

Four species were collected from East sea off Samcheok (37°22′N 129°19′E, 37°36′N 129°47′E)

2004→ June, December 2005→ May, November 2006→ March, September 2007→ April, October 2008→ June, November

Temperature : 0.90 ℃ (300m) ~ 0.35 ℃ (900m)

Materials and Methods

Ovary examination

- 1. Immature (Stage 1)
- 2. Maturing (Stage 2)
- 3. Ripe (Stage 3)
- 4. Spent (Stage 4) (Meredith, 1952)

GSI= Ovarian dry weight / (Body dry weight-Ovarian dry weight) x 100

Egg size
$$4/3 \pi r_1 r_2^2$$

Where r_1 is half the major axis and r_2 half the minor axis.

Statistical analysis

- Chi square test
- Kolmogorov Smirnov two sample test
- Analysis of variance (ANOVA)
- Kruskal Wallis test
- Analysis of covariance (ANCOVA)

Statistical analyses were accomplished in MINITAB Version 12 and SYSTAT Version 10.

3-1

Distribution of shrimps by depth

Depth distribution

Sex ratio by depth

Length frequency distribution

Results

Results Depth distribution

< Proportion of individuals with depth >

< Correlation between the abundance and depth>

• A significant difference in sex ratio by depth of 4 species (Chi - square test, *P* < 0.05).

Predominance of females

at all depth range

in *N. communis* (61.47 % ~ 74.94 %) in *A. toyamaensis* (79.28 % ~ 88.55 %) in *E. biunguis* (84.80 % ~ 97.25 %)

 Overall sex ratio of *P. eous* was male dominant unlike other species in 400 m ~ 500 m depth.

Results Length frequency distribution

Female Ovigerous female 30 35

30 35 30 35 30 35 40 30 35 30 35 40

30 35 Carapace length (mm)

40

N. communis

Largest male, female, ovigerous female distributed at 300 m.

Female : Decreasing size with depth.

A. toyamaensis

Male : Increasing size with depth.

Female, ovigerous female : Decreasing size with depth.

Results Length frequency distribution

Small number of individuals were caught.

P. eous

E. biunguis

Male : Decreasing size with depth

Largest individuals of transitional, female and ovigerous female \rightarrow 700 m

Female, ovigerous female : Increasing size until 800m depth.

3-2

Reproductive pattern

Distribution in winter season

Reproductive characteristics

Egg size

Results Distribution in winter season

Shallow - dwelling species

500

400

300

Ovigerous female mainly distributed at shallow water around 300 ~ 400 m depth.

600

Depth

700

800

900

Deep - dwelling species

Ovigerous female distributed from 300 m to 900 m depth (all depth range).

Results Reproductive characteristics

Ovary stage

---- Total

Femily Crangonidae - N.communis

- 1. Females with spent stage ovaries distributed in shallow depth range (75.51 %), decreased with depth.
- 2. Females with ripe stage ovaries distributed at deepest depth.
- 3. Ovarian development and GSI significantly increased with depth.
- 4. The GSIs differed significantly with depth (K W test, *P* < 0.05).

Results **Reproductive characteristics**

Ovary stage

Non ovigerous female Ovigerous female ---- Total 25 Gonodosomatic index (GSI) 20 15

10 5 0 300~400 900 500~600 700~800

Depth (m)

Femily Crangonidae - A. toyamaensis

- Females with ripe stage ovaries uniformly 1. distributed over all depth.
- The GSIs were not significantly different 2. with depth (K - W test, P > 0.05).

Results Reproductive characteristics

Ovary stage

GSI

Femily Pandalidae - P. eous

- 1. Decreased proportion of spent ovaries stage with depth implies that ovigerous females mainly distributed in shallow water.
- 2. Females with ripe stage ovaries and GSI increased with depth, immature female has rarely appeared.
- 3. The GSIs differed significantly with depth (K W test, *P* < 0.05).

Results Reproductive characteristics

Ovary stage

<Non - ovigerous female>

<Ovigerous female>

Femily Hippolytidae - E. biunguis

- 1. Proportion of ovigerous female with ripe stage ovaries was highest at 700 m depth.
- 2. The GSIs differed significantly with depth (K W test P < 0.05).

Results

Egg size

Egg volume was significantly different between species (K - W test, P < 0.001).

Females with eyed egg stage did not appear during winter season

Non eyed stage : 8.1002 mm³ Eyed stage : 8.9643 mm³

Eyed stage : 0.9278 mm³

Non eyed stage : 0.8306 mm³: Non eyed stage : 0.7078 mm³ Eyed stage : 0.8891 mm³

Non eyed stage : 0.4011 mm³

Distribution

N. comminus

P. eous

Shallow-dwelling species

A. toyamaensis

E. biunguis

Deep-dwelling species

Internal factors External factors

Distribution in <u>deep sea</u> <u>environment</u>

Segregation by depth An adaptation that allows co-existence ... in deep water shrimps

Food resources are limited for species of similar morphology and trophic habitat

(Company and Sarda, 1997)

Sex ratio by depth

Female dominant in all depth

Male dominant at 400 - 500 m depth

Politou(2008) confirmed the primordial role that <u>depth plays in the distribution of</u> <u>different life stage of deep-water shrimps.</u>

The average depth of distribution of *P. eous* increases with the advance of sexual stage (Maeda and Nishiuchi, 1999).

Size Segregation

Size segregation by depth in 4 species may have originated from the difference of either longevity or growth rate related to food conditions or physiological mechanism of growth (Ohtomi, 1997).

Reproductive pattern in winter seasons

Shallow-dwelling species

N. Communis

P. eous

Ovigerous female and non-ovigerous female with spent ovaries stage distributed at shallow water depth.

A number of species do show pre-hatching migration (Hazlett, 1983).

Vertical migration common to many species serve not only for feeding, and locating in the preferred environment for survival, but also for locating mates for breeding purposes (Sastry, 1983).

Reproductive pattern in winter seasons

Deep-dwelling species

A. toyamaensis

E. biunguis

These two species did show that ovigerous females were widely distributed in all depth ranges.

The decrease in larval survival probabilities with increasing depth is offset by laying larger eggs by shrimp species in deeper water and these risks of survival are reduced by the production of larger eggs in deeper water species (King and Butler, 1985).

Species with continuous brooding throughout a breeding season can maximize their egg production (Oh and Hartnoll, 2004)

In conclusion

✤Our results showed that these four species have adapted different reproductive strategies by depth.

*Under the deep water of the East Sea, Korea, optimal vertical distribution have close relationship with reproductive strategies for these four species related to survival efficiency.

Thank you

