A numerical study on the winter mixed layer on the shelf-slope region south of Japan

Hiroshi Kuroda*
Takashi Setou*
Yuichi Hirota*
Manabu Shimizu*
Kazuhiro Aoki*

*: National Research Institute of Fisheries Science, Fisheries Research Agency, Japan

Email: kurocan@affrc.go.jp

The aim of this study is to examine properties and dynamics of mixed layer variation on the basis of high-resolution model

Climatological seasonal cycle of mixed layer depth $(2^{\circ} \times 2^{\circ})$ de Boyer Montégut et al. (2004, JGR)

Data Analysis of monthly temperature profiles on the region southwest of Japan

Dynamical downscaling system

ROMS Regional Ocean Modeling System

Forcings

 Climatological monthly mean flux at the sea surface
Lateral boundary forcings based on daily mean output from each parent model

nesting system 1/2 degree Basin-scale $(O(10^3) \text{ km})$ 1/10 degree Mesoscale $(O(10^2) \text{ km})$

one-way

1/50 degree Submesoscale (O(10¹) km)

Analysis: 2nd year to 5th year

12-hourly time series of mixed layer at Stn.A in Tosa Bay from the 2nd to 5th year

Correlation coefficient of mixed layer depth for Stn.A from January to March

by a method of Kim et al. (2006, JPO)

Feb.

Jan.

-50

Mar.

The sign of tendency is reversed.

Contribution of decomposed components (February)

Conclusions

Seasonal cycle of ML depth and temperature exhibits two regimes

- 1. September to November Monthly mean ML depth increases & ML temperature decreases
- 2. January to March

Monthly mean ML depth and temperature become constant

For the monthly mean heat balance in the ML Heat flux through the sea surface + entrainment ~ advection

eddy heat advection

There is dominant intra-monthly submesoscale variability associated with the Kuroshio or its frontal disturbances

Intra-monthly variation contributes significantly to the monthly/seasonal variation of heat balance within the ML

Thank you for your attention

