Evaluating uncertainty in estimates of how climate change may impact Northeast Pacific marine ecosystems

Shallin Busch¹ Cameron Ainsworth², Jameal Samhouri¹ William Cheung³, John Dunne⁴, Thomas Okey⁵

NOAA - Northwest Fisheries Science Center
Marine Resources Assessment Group Americas Inc.
University of East Anglia
NOAA – Geophysical Fluid Dynamics Lab
WCVI Aquatic Management Board

West Coast Vancouver Island Aquatic Management Board

Uncertainty in estimating response to climate change

producer

IPCC 2007

Biological impacts

Ainsworth et al., in review

Three NE Pacific food web models

Southeast Alaska

Northern British Columbia

Northern California Current

Guénette 2005 Ainsworth et al., 2008 Field 2004

Ecopath with Ecosim Polovina, Christensen, Pauly, Walters

Model uncertainty

For all impacts, we ran scenarios of 3 different strengths:

Ainsworth et al., in review

Model uncertainty

Models vary in their sensitivity to climate scenarios

Model uncertainty

Functional groups vary in their sensitivity to climate scenarios

Ainsworth et al., in review

Process uncertainty

Cumulative effects

Synergy=Additive + Geomean

Cumulative effects

Diversity scores impacted by summation technique

(Dis)agreement among techniques on magnitude of change

	SE Alaska			N. British Columbia			N. Cali Current		
	Geomean	Additive	Synergy	Geomean	Additive	Synergy	Geomean	Additive	Synergy
Forage fish									
Shrimp	22								
Pelagics									
Salmon									
Marine mammal									
Demersal fish									
Squid	8								
Zooplankon									
Rockfish									
Flatfish									
Crabs	<u>.</u>								
Seabird									
Shellfish									
Sharks									
Primary producers									
Jellies									
% change from b	aseline								

(Dis)agreement among techniques on magnitude of change

N. British Columbia

N. Cali. Current

Process uncertainty

- Combinatorial techniques greatly affect magnitude of predicted change
- Agreement among techniques when results ranked is slightly better
- Must consider how well combination techniques capture physiological and population-level process of interest

Effect size uncertainty

Ocean acidification scenarios

Time

Certain Shrimp Euphausiids "Epifauna" "Infauna" "Carn. epibenthic inverts"

Uncertain – unidirection Crabs Copepods "Infaunal detrital inverts" "Epibenthic inverts" "Carnivorous zooplankton" "Small zooplankton" Marine plants Uncertain – multidirectional Jellyfish Phytoplankton "Microzooplankton" "Large zooplankton"

Busch et al., in prep.

Ocean acidification scenarios

Linear change over 50 yrs.

	Climate scenario					
Effect size	Nominal	Moderate	Severe			
Small	5%	10%	15%			
Large	25%	50%	75%			

Ainsworth et al., in review

Effect size uncertainty

- Importance of understanding climate change impacts on primary producers
- Ecosystem impacts of change in non-primary producers can be dwarfed by change in primary producers

Parameter uncertainty

Monte Carlo methods

- Biomass
 - Ecopath with Ecosim Monte Carlo routine
 - Coefficient of variation dependent on functional group
 - 15% phytoplankton, zooplankton & benthic meiofauna
 - 5% all others
 - Uniform distribution, 200 trials
- Vulnerability
 - Manually implemented in Ecosim
 - Every predator-prey interaction varied independently
 - Coefficient of variation: 50% all groups
 - Uniform distribution, 200 trials
- Results: 1) functional group, 2) aggregated functional group

Monte Carlo results

Biomass Monte Carlo: Southeast Alaska, benthic invertebrates Biomass Monte Carlo: N. Cali Current, small pelagic fish

Compounding impacts of trophic dynamics

Monte Carlo results

- About 30% of the functional groups and aggregated functional groups have >10% change in biomass
- Biomass change for vulnerability Monte Carlos less than forced variation
 - Magnitude of change
 - Number of groups

Sensitive functional groups: biomass change >10%

Functional groups

All models Salmon Pacific Ocean perch Flatfish Halibut Crabs Shrimp Epifaunal inverts Infaunal detritivores

2 models Sharks Forage fish Herring Rockfish Pacific cod Arrowtooth Phytoplankton Aggregated groups All models **Benthic inverts** 2 models Large and small pelagics Birds Flatfish 1 model Elasmobranches

Parameter uncertainty

- Knowing the biomass and vulnerability of some species groups matters more than others
- Sensitivity to biomass estimates is greater than to vulnerability estimates
- Sensitivity of specific functional groups to parameter uncertainty is fairly well captured in aggregated groups

Conclusions

- Modeling ecosystem impacts of multiple climate change impacts is messy
- Understanding how uncertainty impacts our results can help us target assumptions and data inputs that may matter most
- Recognize that modeling exercises tell us the type of changes we may expect, not the magnitude or the specific effects