Pteropods and Ocean Acidification: Combining Observation, Experiments and Modelling

PICES, Korea, 2014

R Feely, S Aline, A Hermann, J Menkel, B Peterson, J Reum, S Siedlecki, N Tolimieri

Carbon Changes at the Hawaii Ocean Time-series (HOT) site

Surface water pCO₂ is increasin_{ at about the same rate as atmosphere CO₂ emissions.

We see a commensurate decrease in pH with the rise in surface water pCO₂

> Doney, Science 2010 Dore et al., PNAS 2009

Natural processes that could accelerate ocean acidification in coastal waters

Offshore water displace ment due to earth's rotation

Upwelling

Coastal Upwelling

brings high CO_2 , low pH, low O_2 , low Ω , water to surface **Exposure of coastal ecosystems to corrosive upwelled water**

 $\Omega > I$ CaCO₃ precipitates $\Omega = I$ equilibrium $\Omega < I$ CaCO₃ dissolves

Ocean Acidification in California Current System

Percent of upper 100 m in CCE water column estimated to be undersaturated during the (a) pre-industrial, (b) 2011 and (c) predicted for 2050.

Ocean Acidification from a perspective of:

effect of multiple stressors

Pteropods as a case study

Experimental design

a) carbonate chemist

b) bio experimentalist

c) modeler

Seasonal/interannual variability Processes

Teasing out each process at space/time scale, observations to validate models

Pteropods

Pteropods are ubiquitous shelled pelagic snails and belong to zooplankton group (2 classes: Thecosomata and Gymnosomata)

Compose ~10% of total number of organisms of the CCS in the upper 40 m and important component of NP community

0.5 m

With their high grazing rates they play a vital role within the zooplankton community

Clione limacina li Hopcroft/UAF/NOAA/CoML

Pteropods as food source for ...

Chum salmon

Sockeye

Pteropods – biogeochemical implications

As a microphagous zooplankton important producer of faecal
 pellets → biogenic matter export
 The only pelagic aragonite producers → maintaining alkalinity flux
 20-42% to the global carbon export production → fuelling long-lived carbon pool and carbon sequestration

WCOA NOAA 2013 cruise

→Space-for-time approach → pteropod response at various carbonate gradients in the natural environment
→What 'stress' are pteropods exposed to due to OA? What is the status of 'healthy' pteropod?

Pteropod shell dissolution in the California Current Ecosystem

Shell dissolution not the case of future scenarios (North, Coastal regions of CCS) Onshore vs offshore shell as observed under the scanning electron microscope

Pteropod Shell Dissolution in the Natural Environment

Strong positive relationship between % of undersaturated waters and proportion of dissolved individuals

Bednaršek et al., Proceedings to the Royal Society, 2014

Dissolution of indicator of past, present and future

Pre-industrial level of dissolution only due to upwelling: naturally occurring dissolution (18%)

Currently, significant increase in dissolution \rightarrow 53% in the coastal regions.

By 2050: ~70% of water column will be undersaturated \rightarrow 70% of pteropods affected by severe dissolution in the coastal regions

Vertical migration responses

Eddy-associated front (off- and on-shore of the front)

Difference in the aragonite saturation depth: Cycle 4 vs Cycle 3

Space-for-time exchange approach to examine pteropod vertical distribution and species richness

Changes in vertical migration and species richness

- \rightarrow Changes in biodiversity with reduced habitat
- \rightarrow Potential food web implications

Dissolution vs Calcification?

→Dissolution becomes the dominating process even at Ω_{ar} ~1

→ Calcification cannot offset dissolution $\Omega_{ar} < 1$

 \rightarrow 1.4% of shell mass per day (Ω_{ar} =0.8) and slower sinking velocities (2X) and decreased carbonate fluxes to the deep

Model predictability

J-SCOPE: Combination of NOAA's Climate Forecast System and Regional Ocean Modeling System

Model Output, forecasting average undersaturation July 2013

Model largely agrees with chemical observations \rightarrow forecasting of biological responses \rightarrow Magnitude index

S A

Next steps

- Various pteropod responses strongly correlated with Ω_{ar} , OA monitoring: hypoxia next \rightarrow multicolinearity!
- First steps towards the development of an index for forecasting OA for pteropods (other calcifiers?)
- Determination of exposure regimes for bioassays
- Pteropods as ecosystem indicators in the integrated ecosystem assessment
- Translation into policy (communication and information sharing) for stakeholders along the West Coast -> Mitigation/Adaptation Strategies

Future of Pteropods?

Will pteropods survive ocean acidification?

At 600-700 ppm stabilization scenario, dissolution and mortality increased, calcification decreased.

Important to keep pCO_2 as low as possible.

