Modeling the central North Pacific ecosystem response to predicted climate variations and fishery management scenarios

Evan A. Howell¹, John P. Dunne ${ }^{2}$ and Jeffrey J. Polovina ${ }^{1}$
${ }^{1}$ NOAA Pacific Islands Fisheries Science Center, Honolulu, HI USA ${ }^{2}$ NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ USA

IORA

Why look at this?

Polovina et al. 2009 paper - central North Pacific (HI Longline Fishery)

Observed CPUE (biomass) changes over 10 years

\%Target Species
 \%Incidental Species

Can we look forward?

Climate

Have GFDL data to 2100

Ecosystem
Build EwE model for CNP

F=1X
$F=2 X$

$$
F=0.5 X
$$

Do we expect trend to continue?

Increases in the relative abundance of mid-trophic level fishes concurrent with declines in apex predators
in the subtropical North Pacific, 1996-2006

Jeffrey J. Polovina (contact author) ${ }^{1}$
Melanie Abecassis ${ }^{2}$
Evan A. Howell ${ }^{1}$
Phoebe Woodworth ${ }^{2}$
Email address for contact author: Jeffrey.Polovina@noaa.gov
Pacific Islands Fisheries Science Center
NOAA Fisheries
2570 Dole St
Honolulu, Hawaii 96822-2396
2 Joint Institute for Marine and Atmospheric Research
University of Hawaii
1000 Pope Rd.
Honolulu, Hawaii 96822

Model construction

Fishing (Top-down forcing): SPC + NOAA Longline

ETP EwE Model CNP Model FishBase Stock Assess.

Phytoplankton (Bottom-up): GFDL ESM2.1 A2 NPZ projection

First: Ecosim run 1996-2006

Recreate trends observed?

Second: Ecosim runs 2000-2100

Observe similar trends?

Initial model run results: 1996-2006

Force PP biomass (L/SM) with GFDL (high corr w/ SeaWiFS)

Fishing effort from NOAA/SPC Monthly effort

Ecosim 1990-2010, subset 1996-2006
Compare Biomass

Target species: Fit to stock assessment biomass (B) time series

Incidental species: Fit to fishery CPUE (B proxy) time series
Escolar (1.0000)

Mahi (1.0000)

Ecosim runs to 2000-2100

$F=1 \times 2008$ levels
$F=2 X 2008$ levels
$F=0.5 \times 2008$ levels

Results: F = 1X2008

2000-2020

\%Incidental Species

2080-2100

\%Incidental Species

$F=2008$

Example Targets

Bigeye tuna 60\% biomass decrease Swordfish 40\% biomass decrease

Example Incidentals

Snake Mackerel 150\% biomass increase Escolar small biomass increase

$F=2 X 2008$

2080-2100

2000-2020

\%Incidental Species

Example Targets

Bigeye tuna 100\% biomass decrease Swordfish 95\% biomass decrease

Example Incidentals

Snake Mackerel 200\% biomass increase Escolar 200\% biomass increase

$F=0.5 \times 2008$

\%Target Species

\%Incidental Species

2080-2100

\%Target Species
 \%Incidental Species

$F=0.5 X 2008$

Example Targets

Bigeye tuna 20\% biomass decrease Swordfish 35\% biomass decrease

Example Incidentals

Snake Mackerel 100\% biomass increase
Escolar tiny biomass increase

Fishing scenario comparison

Grouped biomass snapshots at 2020, 2050, 2100

Target Species
(e.g. Tunas, Billfish)

Fishing 1X,2X: Larger split target/incidental species

Incidental Species (mid-TL)
(e.g. Snake Mackerel, Escolar, Mahi)

Fishing 0.5X: Comp. decrease in species over time

$F=0.5 \times 2008$

Target
Incidental

Fishing scenario comparison

Overall view: almost all species decline in any scenario

Fishing 1X,2X: More effort affects T/I ratio

Fishing 0.5X: Species decrease yet no ratio change

Summary and Future Work

GFDL climate scenario: $\sim 18 \%$ drop in phytoplankton in HLFG. Bottom-up forcing = projected species decrease

Climate effects compounded by top-down fishing pressure. This results in lower projected target species B and T/I ratio

Based on projected results would recommend decrease in fishing effort in HLFG to preserve T/I ratio and decrease biomass reduction of target species

Continue to refine model where necessary, and understand sensitivities/uncertainties ("Peterman complex")

Future: Incorporate fishery yield and projected cost/loss based on model results (trade-offs)

What' \& for diumer?

2000-2020
2080-2100

