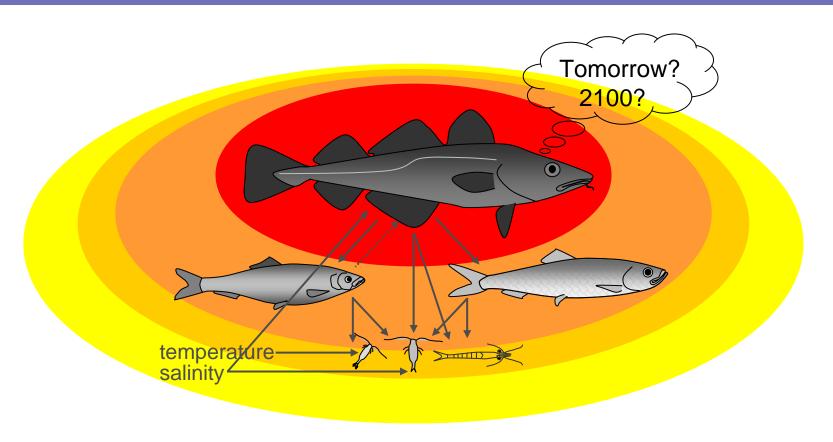
Biological Ensemble Modelling of the Eastern Baltic cod future

- so far & where to go from here


Anna Gårdmark

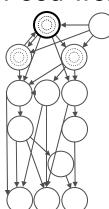
S. Neuenfeldt, T. Blenckner, **M. Lindegren**, E. Aro, O. Heikinheimo, B. Müller-Karulis, S. Niiranen, M. Tomczak, A. van Leeuwen, A. Wikström and C. Möllmann

How to project future fish populations?

Biological Ensemble Modeling Approach (BEMA)

- compare projections across models and model types
- assess impact of model structure on the range of projected outcomes
- seek conclusions valid across models and scenarios

Ensemble Modelling


- Ensemble modelling: same scenarios & forcing across models
- common tool in global climate modelling (IPCC) and used in other biological fields
- Ecosystem Approach to Fisheries Management
 - account for climate effects, species interactions etc.
 - → the diversity and complexity of models increase
- Biological Ensemble Modelling Approach: application in fisheries (e.g., future EB cod)
 - variation between models of different complexity?
 - causes of variation between models (e.g., structure, methodology)?
 - effect of ensemble weighting and composition?
 - general conclusions across models possible?

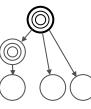
8 models of Eastern Baltic cod

Single species

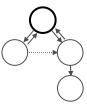
- \bigcirc
- 1. Wikström, A. et al. *in prep*.
- 2. Aro, E.; ICES (2008)
- 3. Müller-Karulis, B. *in prep.*

Food-web

8. Tomczak et al. *in prep.*


Multi-species

4. Heikinheimo, O. (2009) ICES J Mar Sci



5. Neuenfeldt, S; ICES (2004)

6. van Leeuween, A. et al. (2008)

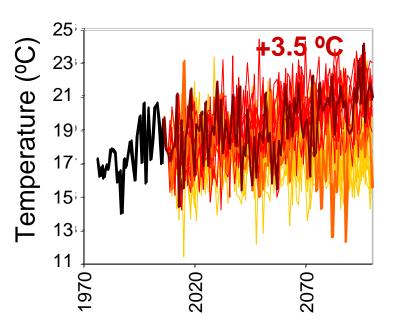
J Sea Research

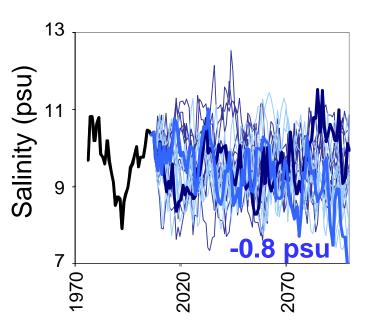
7. Lindegren et al. (2009) Proc Nat Acad Sci

Future Fishing and Climate scenarios

Fishing

- 3 fishing mortality (constant) scenarios:
 - mean F of 1996-2005 for all species (F_{cod} ≈1, F_{sprat} ≈0.4, F_{herr} ≈0.3)
 - cod management plan target met (F_{cod}=0.3)
 - cod fishing ban (F_{cod}=0)

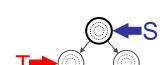

Climate


- 2 climate scenarios:
 - no climate change (mean historical levels)
 - climate change, regionally down-scaled IPCC scenario

Climate change scenario: an example

Hydrographic forecasts

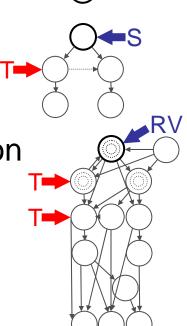
- Global Circulation Model → 3-D Regional Atmosphere & Ocean Model
 → temperature & salinity forecasts 2071-2100 (Meier 2006)
- temperature & salinity time-series (2006-2100) based on the observed mean, variance & auto-correlation 1972-2005 (i.e., 10 runs were simulated using an AR(1) model; Ripa and Lundberg 1996)



Hydrographic effects on modelled fish

Salinity → cod recruitment (Heikinheimo 2006, fitted to new data)

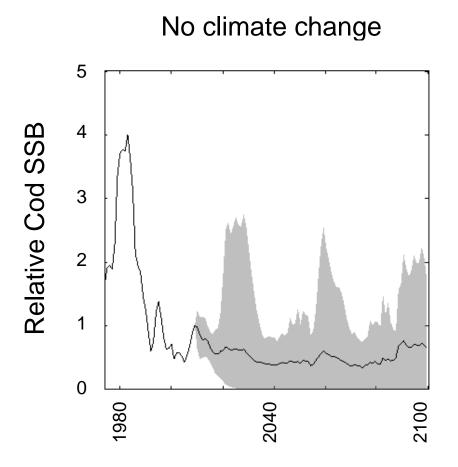
Temperature → sprat recruitment (Baumann et al. 2002, fitted to new data)

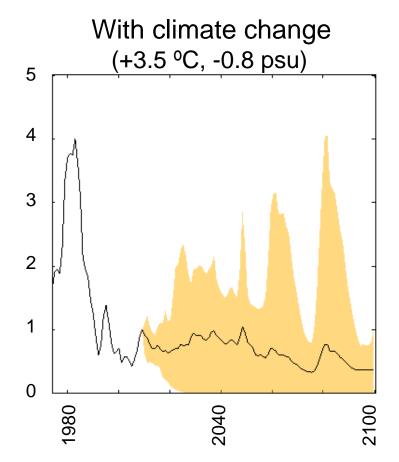

Salinity → cod biomass

Temperature → sprat biomass

Reproductive volume \rightarrow cod egg production

Temperature → sprat egg production

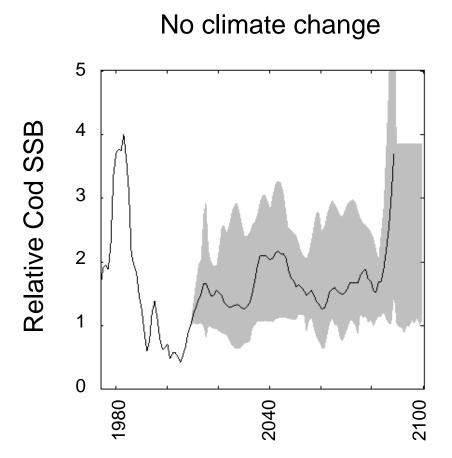

Temperature → zooplankton biomass (some groups)

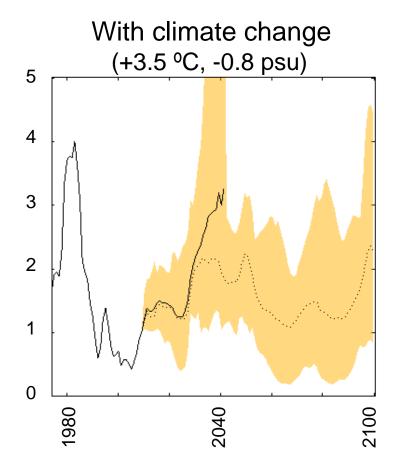


Future with intense cod fishing: example

Range of projected outomes

 F_{cod} =1.08 (mean of 1996-2005)



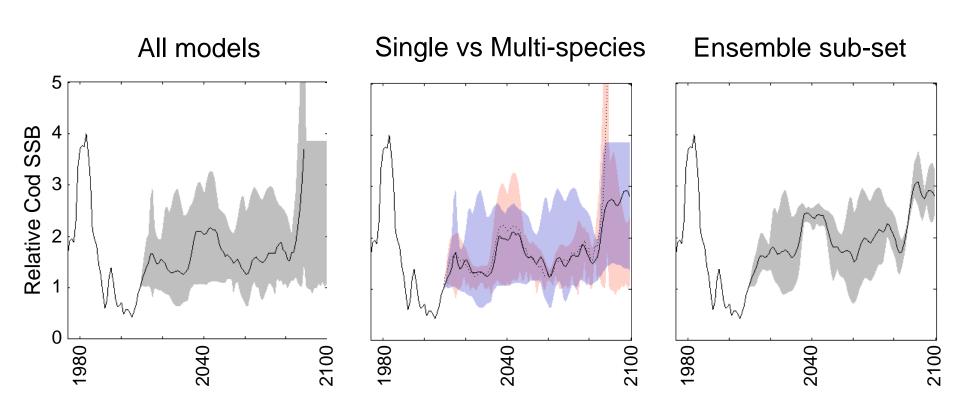


Future with cod management target F: example

Range of projected outomes

F_{cod}=0.3 (target F in EU cod management plan)

Structural causes of variability?


 F_{cod} =0.3 (target F) and no climate change, all runs

Weighting & ensemble sub-sets

Range of projected outomes

 F_{cod} =0.3 (target F) and no climate change, run 1

Conclusions across models?

Fishing	Climate	Relative Cod SSB ₂₁₀₀			
		Extinct	Decrease < SSB ₂₀₀₉	Increase > SSB ₁₉₉₅	Rebuilt > SSB _{1980s}
Intense (F=1.08)	current climate change	3,7	1,2,4,5,6,7,8 1,2,4,5,8	8 (none
Mngmt plan target met (F=0.3)	current climate change	none	4,5 1,2,4,5,7	1,2,3,5,7,8 1,2,3,5,7,8	2,3,4,5,7,8 2,3,4,5,8
Fishing ban (F=0)	current climate change	none	1,4 1,4,7	1,5,7,8 1,2,5,7	1,2,3,4,5,7,8 2,3,4,5,8

Conclusions

- Eastern Baltic cod example
 - no recovery if fishing returns to mean levels of 1996-2005
 - recovery if following the managemen plan (even under climate change)
- Biological Ensemble Modelling Approach (BEMA)
 - collate and compare possible future population developments
 - provides and communicates the range of projected outcomes
 - enables conclusions across models and scenarios
 - assist in management advice
- tool for biological model development
 - identify critical uncertainties and knowledge gaps
 - identifying structural causes of model ensemble variability
 - → focused collection of field or experimental data
 - → need for further model development (e.g., interactions, feedbacks and improved S-R models)

13 (14)

Thanks!

anna.gardmark@fiskeriverket.se

Thanks to: ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea 2009