

Are the observed pattern changes of ocean heat, salinity, oxygen man made?

Nathan Bindoff¹²³⁴⁵,Oliver Andrews⁶, Paul Halloran⁷, Corinne Le Quere⁸, Catia Domingues² and Helen E. Phillips^{3,5}. CAWCR¹, ACECRC², IMAS³, CSIRO⁴ University of Tasmania⁵ University of East Anglia⁶, UK MetOffice⁷, Tyndall Centre for Climate Change Research, University of East Anglia⁸

Outline

- Introduction
- Background (detection and attribution)
- The patterns of change (indices)
- Attribution to GHG emissions
- Conclusions about ocean and application to marine ecosystems

- Anthropogenic greenhouse gas increases very likely caused most of the observed warming since mid-20th century
- extremely unlikely due to natural variation

Attribution results – SST

- TAR "most of the observed warming over the last 50 years is **likely** to have been due to the increase in greenhouse gas concentrations"
 - likely replaced with very likely
 - GHGs likely would have caused more than observed

😨 🕸 Water Mass change

Surface salinity changes

Comparison with models

VE RESEARCH CENTR

10 IPCC models 1970-2000 Estimated P-E

+16±6% in S. Ocean + 7±4% in N.H - 3±2% in S.T. gyres

Helm et al 2010

Surface salinity changes

Ocean temperatures and human influence

Time of emergence of human influence

Hindsight view, says fingerprint of change virtually certain of detection in 1985

Slide #15

Ocean temperatures and human influence

Decreased ventilation

-20

20

Table 5.1. Fraction of CO₂ emissions taken up by the ocean for different time periods.

Time Period	Oceanic Increase (GtC)	Net CO ₂ Emissions ^a (GtC)	Uptake Fraction	Reference
1750–1994	118 ± 19	283 ± 19	0.42 ± 0.07	Sabine et al., 2004a
1980–2005 ^b	53±9	143±10	0.37 ± 0.07	Chapter 7 [°]

-60

0.3

60

-10

-15

-5

0

Change in oxygen concentration

5

Oxygen change on density

60N

60N

15

40N

40N

10

surface

Oxygen change from displacement of density surface

·Global Scale •Not heave ·1970 to 1990's

Are oxygen changes anthropogenic in origin?

Andrews et al, 2012

Slide #20

Slide #21

Are oxygen changes anthropogenic in origin?

Very likely that oxygen decreases are anthropogenic Evidence is mainly driven by physics (except at depth)

Conclusions: Global Ocean

Ocean is Changing

- Surface waters are lighter
- •Strong evidence for reduced ocean exchanges (SAMW lower in oxygen, upwelling CDW lower in oxygen)
- •Surface salinity show acceleration of water cycle (meridional and equatorial)
- Attributions imply reduces overturning circulation
- Significant evidence of ocean responses
 that attributable rising GHG

Prospects: marine ecosystems

- Best applications
 - Detection works for global distributions
 - Longish time series
 - •Numerical, quantitative models of ecosystems responses ("coupled") to physical models
 - •Internal variability (control simulations) represent the "null" hypothesis
- •IPCĊ
 - Detection and Attribution guidance paper
 Qualitative and quantitative approaches