

Climate change impacts on shelf and coastal marine ecosystems: contrasting ocean-shelf exchange, stratification and temperature effects on the NW European shelf

Jason <u>Holt</u>¹, Momme Butenschön², Sarah Wakelin¹, Yuri Artioli², Icarus Allen², James Harle¹, Jason Lowe³, Jonathan Tinker³

Climate impacts on shelf sea ecosystems

Changes in global radiative forcing

An extreme downscaling problem

Changes in phytoplankton growth

Views of climate impacts on phytoplankton growth

The hypothesis:
Three key physical drivers

Biogeochemical composition

Huthnance et al (2011); Wakelin et al (2009)

Ocean-shelf exchange

Phytoplankton blooms

Sverdrup (1953)

Turbulencestratification-mixing Interplay

Physiological response

Growth rate response to temperature: autotrophic and heterotrophic

Global Earth System Model Ocean-Atmosphere-Ice-Ecosystem

Oceanic: T, S, N

Downscaling

Atmospheric conditions: Temp., Precip., Wind, Radiation

Fine resolution regional hydrodynamics model

Regional ecosystem model

Forced by IPSL-CM4 inc PISCES
Same models as used in QUESTFISH

The Timeslice Experiments

Consider A1B minus CNTRL

Assumes:

Timeslices are long enough to:

- 1. Adjust to new conditions ('spin-up')
- 2.Average-out internal variability Both marginal here

A1B = 2082-2099 CNTRL = 1983-2000 18years + 5 year 'spin-up' Reference: ERA40 = 1960-2004

For details, validation and many results see:

Holt, et al, 2012. Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario. *Biogeosciences* 9, 97-117.

These experiments.....

- ARE NOT PREDICTIONS and NOT PROJECTIONS
- We shake the system and see what happens
- We choose for these SENSITIVITY experiments a perturbation that is DYNAMICALLY CONSISTENT and arises from a PLAUSABLE future radiative forcing scenario (A1B)
- This is NOT UNIQUE, but the diagnostics of the response gives important information on SYSTEMS BEHAVIOUR.

Change in net Primary Production

Fractional Change: A1B

Regional winter N v's N uptake following year

Transport across 200m isobath

Small reduction in volume flux See Holt et al *GRL* 2009 Substantial reduction in DIN concentrations

Process attribution experiments

Seasonal Profiles: Celtic Sea

In A1B

- Earlier commence of growth (A)
- Stratification starts about same time (B)
- •Surface layer depleted of N at about same time (C)
- Longer pre-stratification bloom*
- More efficient use of winter Nutrients
- Can be counteracted by reduced diapycnal mixing

*Phytoplankton respond to reduced mixing but full depth nutrient flux still active. Huisman et al *L&O* (1999) 'critical turbulence'

Changes in key times in seasonal cycle

•Growth Start netpp > 0.1gCm⁻²d⁻¹

- •Strat. Start = max dN/dt
- •Bloom stop N>20% wint N
- •Growth Stop netpp < 0.1gCm⁻²d⁻¹

Bloom stop

Growth stop

Changes in bloom production

Other views of the system

Change in community composition: diatom fraction

Earlier blooms favour diatoms and more efficient winter Si use

Temperature effects

- •Temperature dependence is much more apparent on plankton biomass than netPP
- Heterotrophs and autotrophs have same q10 parameterisation

∆ Zoo biomass T

This is not the future......

Conclusions

- Climate change impacts in shelf seas are highly nuanced, with multiple competing drivers
- This is a robust analysis of the response of the system, but need a
 description of likelihood to make projections
- Oceanic nutrients and stratification are first order controls of netPP changes, whereas temperature is a secondary effect in this model
- Subtle changes in mixing due to changes in light and wind mixing conditions have substantial effects on:
 - Bloom timing
 - Community structure
 - Total netPP
- But light (cloud cover) is an uncertain element in climate models
- Mixing in weakly/intermittently stratified conditions is weakness of the present generation of turbulence models