

Near-term climate prediction: new opportunities and challenges

Noel Keenlyside, Geophysical Institute

Jin Ba, Jenny Mecking, Nour-Eddine Omrani, Annika Reintges, Doug Smith, Adam Scaife

Natural Atlantic multi-decadal variability with strong socio-economic impacts

Period of 70-80 years (detrended timeseries)

Sahel rainfall (summer)

Observed spreading of Atlantic cod along the coast of Greenland, 1900-1940

What is the potential to predict the decadal shifts in the climate system?

- Decadal climate variations internal versus external
- Near-term prediction initial/boundary value problem
- Challenges to near-term climate prediction
- We are in a highly experimental stage

Multidecadal temperature fluctuations: Internal versus externally driven?

Internal variability large at decadal/regional scales External dominates on centennial

Surface temperature trends

Models simulate similar decadal variability independent of external forces

Kiel Climate Model, preindustrial control simulation

Similarly for PDV, and various other modes

Near-term prediction – initial/boundary value problem

Externally driven climate projections

Prediction uncertainty: scenario, model, and internal

Surface temperature projections from 15 climate models

Near-term surface temperature prediction: model and initial condition uncertainty large

Relative importance computed from CMIP3 models

Hawkins and Sutton, BAMS, 2009

Predicting global temperature for next decade: Initialising with ocean reanalysis

Decadal prediction skill - Initialised hindcasts with ECHAM5/MPIOM

Correlation with observed surface temperature anomalies years 1-10; 9 hindcasts, 1955-2005

Keenlyside et al. 2008

North Atlantic subpolar gyre – very predictable

Raw CCSM4 predictions of SPG heat content anomalies 10 year long; 10 members

Prediction of Pacific Decadal Variability possible a few years in advance

CCCma predictions of PDO index Every five years from 1961, 10 year long; 10 members

AC PDO pred, 1961-2005, mean over years

Fabian Leinert PhD thesis

Lead-time (years, running average)

Challenges to near-term climate prediction: an illustration from the Atlantic

- Model 'response' uncertainty
- Model 'mechanism' uncertain
- Ocean initial conditions uncertain

Poleward heat transport and role of Meridional Overturning Circulation

Kiel Climate Model – MOC (black), Atlantic sea surface temperature (red)

[Latif et al. 2009]

Meridional overturning circulation (MOC)

Large uncertainty – model projections of AMOC

AMOC at 30N, CMIP3 models, 20C/A1B

Quantifying uncertainties in decadal AMOC change

Relative uncertainty (CMIP3)
Atlantic Meridional Overturning Circulation at 30N

Uncertainties in internal variability

Spectra of AMOC 30N

CMIP3 Pre-industrial Runs

Ocean driven by stochastic atmospheric variability

Ocean model simulation driven by stochastic NAO forcing

Wavelet spectrum: AMV: North Atlantic average SST

Courtesy: Jenny Mecking

Ocean-atmosphere coupling: Potential role of stratosphere

Observed 1951-1960 anomalies

Simulated

Atlantic SST

1951-1960

onse to

Lower stratosphere resolving

NCEP/NCAR 1000hPa GPH anomaly

30

20

10

-12

-18

Entire stratosphere resolving

1000hPa GPH

Omrani et al., submitted

Uncertainties in initial conditions

Keenlyside & Ba (2010)

We are in a highly experimental stage

IPCC AR5 near-term predictions: what to expect, how reliable?

Fig. 9. Schmatic of decadal predictability/prediction experiments as part of CMIP5 (from Taylor et al. 2008).

Decadal Forecast Exchange

Doug Smith, UKMO-Hadley

Uni. Tokyo – *Kimoto Masahide* **MRI** – Masayoshi Ishii

SMHI – Klaus Wyser, Colin Jones KNMI – Wilco Hazeleger, Bert Wouters

IC3 – Francisco Doblas-Reyes, Virginie Guemas

MPI – Daniela Matei, Wolfgang Muller RSMAS – Ben Kirtman

CCCMA – George Boer, Bill Merryfield

UKMO-Hadley – *Doug Smith, Adam Scaife*

NRL – Judith Lean, David Rind **NOAA** – Arun Kumar

Please contact: doug.smith@metoffice.gov.uk to contribute your forecasts...

What is the potential to predict the decadal shifts in the climate system?

- Some initial success, especially in the N. Atlantic
- Major challenges exist:
 - Model and initial conditions uncertain large
- We are in a highly experimental stage

