Hindcast and historical assessment of Cyclone Tomas and climate change impact analysis on tropical cyclones in the South Pacific

Tomohiro YASUDA (Kyoto Univ. DPRI) <u>Yusuke TANAKA (Kyoto Univ. Graduate Sch.)</u> Junichi NINOMIYA (Kyoto Univ. Graduate Sch.) Sota NAKAJO (Kyoto Univ. DPRI) Nobuhito MORI (Kyoto Univ. DPRI) Hajime MASE (Kyoto Univ. DPRI)

Introduction

- Islands in South Pacific are extremely sensitive and vulnerable against coastal climate change. Sea level rise will cause significant impacts on these small southern islands.
 - For example, in Fiji the inundation by the swell and coastal disaster has occurred at the south coast.
- Moreover climate change also may affect tropical cyclone (TC) intensity in the future climate.

Purpose

- In this study, we have investigated the impact of TC locally and historically. We have selected TC Tomas in Fiji as a case study,
 - 1. Conducting the hindcast simulation
 - 2. Examining how large Tomas intensity was historically
 - 3. Investigating whether TC intensity in South Pacific will vary due to the climate change

Outline

TC Tomas

1. Hindcast TC Tomas 2. Historical Analysis of TC Tomas 3. The Affect of Climate Change for TC

Model 1: WRF for wind Model 2: SWAN for H_{sig}

Return Period

from IBTrACS

Return Period from MRI-AGCM

TC Tomas

1. Hindcast TC Tomas

The research fields

Numerical Information of WRF and SWAN

	WRF	SWAN ver. 40.81
Simulation Period	12 th , Mar, '11 0:00 – 17 th , Mar 0:00 (UTC)	13 th , Mar, '11 12:00 – 16 th ,Mar 11:50 (UTC)
Resolution	3 km mesh size	500 m mesh size
Time step	6 sec	10 min
Initial & Boundary Condition	NCEP FNL Operational Global Analysis data	Cold Start
Topology data	GTOPP30	GEBCO (30 sec mesh data)

The Results of Simulation ~ Air Pressure Gradient ~

The Results of Simulation $\sim H_{sig}$ and Wind in the East of Vanua Levu

Statistics Analysis ~IBTrACS~

Sample data

 \bullet IBTrACS (1955 \sim 2008) $:63 \ {\rm samples}$

The data extraction condition

- Using the cyclones which are closer than 400km from Suva
- Using the strongest cyclone in each years
- The number of sample data picking up is 33 samples

Cyclone Routes

The histogram of Minimum Central Pressure (IBTrACS)

Weibull PDF

The Trend of TC around Fiji sea

The Return Period of TC Tomas from IBTrACS

3. The Affect of Climate Change for TC

TC Tomas

2. Historical

Analysis of

TC Tomas

Return Period

-Present~

from IBTrACS

he Affect o

Climate hange for TC

Return Period

from MRI-AGCM

I. Hindcast

TC Tomas

Model 2: SWAN

for H_

Model 1: WRF

for wind

KAKUSHIN Program

- In Japan, Innovative Program of Climate Change Projection for the 21st Century (abbreviated as KAKUSIN Program) has been carried out to contribute to IPCC AR5 concerning with climate projections for near future and for the end of the 21st century since 2007.
- Long-Term Global Change Projection
- Near-Term Climate Prediction Climate 2030 -
- Extreme Event Projection

TC genesis distribution of Present climate experiment

²² The Future Prediction of TC in South Pacific with Ensemble Mean

Statistics Analysis Near Fiji

Sample data

- IBTrACS (1955 \sim 2008) : 33 samples
- ♦ MRI-AGCM 3.2S Present (1980~2003): 41 samples
- MRI-AGCM 3.2S Future (2076 \sim 2099): 47 samples

The data extraction condition (for MRI-AGCM)

The domain is from 175 deg. to 185 deg. (EW)
 from -15 deg. To -20 deg. (NS)

The histogram of Minimum Central Pressure near Fiji The Extraction Condition The domain is from 175 deg. to 185 deg. (EW) from -15 deg. To -20 deg. (NS)

The Return Period of TC Tomas (944hPa) from MRI-AGCM

$$R = \frac{1}{\lambda \left[1 - F(x) \right]}$$

$$F(x) = 1 - \exp \left[-\left(\frac{x - B}{A}\right)^{k} \right]$$

$$B \le x \le \infty$$

R : return period λ : mean rate of genesis F(x) : CDF A, B : constant x pressure

4. Conclusions

- 1. The significant wave height is high in the east of Vanua Levu, this is consistent with the disaster report.
- 2. The return period of TC Tomas is about 10 years.
- In future climate around Fiji, the intensity of TC will be weaker (about 5hPa) in average. On the other hand, the strong TC will be formed more frequently. And the return period of TC same as TC Tomas will be about 5 years.

Thank you for your attention. And questions?