

Impact of climate change on the development of marine aquaculture: a case study on the Japanese scallop in Dalian, China, using satellite remote sensing and GIS-based models

Yang Liu¹, Sei-Ichi Saitoh¹, I. Nyoman Radiarta², and Toru Hirawake¹

Second International Symposium Effects of Climate Change on the World's Oceans

Yeosu, Korea May 15–19, 2012 ¹ Faculty of Fisheries Sciences, Hokkaido University, Japan.

² Ministry of Marine Affairs and Fisheries, Indonesia.

Introduction

Japanese scallop (Mizuhopecten yessoensis) in Dalian, China.

- An alternative species from Japan for aquaculture in 1982.
- Accounts for about 90% of the total national production
- Annual production was about 260,000 tons in 2009 (Dalian Bureau of Statistics, 2010).

Large-scale mortality from 2007 (Liu et al 2010.)

- Climate and environmental change
- Human activities

Sustainable scallop culture

Introduction

Climate variability El Niño The Oceanic Niño Index (ONI) 2 12DE 150E 18D 150W 12DW 90W 1.5 1 18192021222324252627 0.5 NO La Niña 4 7 10 1 4 7 10 1 4 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 -0.5 -1 -1.5 2004 2005 2007 2008 2009 2010 2006 -2 http://www.cpc.ncep.noaa.gov 12DE 150E 18D 150W 12DW 90W 60W

18192021222324252627282930

- The changes in sea surface temperature might impacts on the productivity across the coastal and marine systems(Saitoh et al., 2011)
- El Niño- low spat density of scallop; La Niña- low growth of scallop (Baba et al., 2009)

Introduction

Climate variability

Arctic Oscillation (AO)

• The severe ice conditions over the Bo Sea, China in 2010 was mainly controlled by AO (Bai et al 2011)

Objective

- To continue develop GIS-based models and use remote sensing data to identify the most suitable sites for hanging culture of Japanese scallop development in Dalian, China
- Compared with ENSO events and AO, in order to examine the impact of climate change variability on scallop aquaculture development.

Study area

Parameter	Data sources	Resolution	Time
Sea surface temperature	MODIS	1 km	2004 -2011 Daily
Chlorophyll-a	MODIS	1 km	2004 -2011 Daily
Secchi Disk Depth (SDD)*	K _d (490) MODIS	1 km	2004 -2011 Daily
Bathymetry	E-TOPO 1	1 arc minute	
Harbor; Town; River; Pier; and Aquaculture pond	ALOS AVNIR-2	10 m	Nov., 5, 2009 Oct., 5, 2010 Dec., 7, 2010

* The SDD algorithm: SDD	$=1.43 \text{ x } \text{K}_{\text{d}}(490)^{-0.89}$
[Wang et al., 2005]	

Method

Built on hierarchical structure

- Factors: 7 parameters
- Constraints: 3 parameters

Scoring: 1 (least suitable) - 8 (most suitable) (Radiarta et al., 2008)

Parameters	Suitability rating and score							
	8	7	6	5	4	3	2	1
Chlorophyll-a (mg m ⁻³)	1.4-2.0	1.2-1.4	1.0-1.2	0.8-1.0	0.6-0.8	0.4-0.6	0.2-0.4	< 0.2 or > 2.0
Bathymetry (m)	> 20.0	17.5-20.0	15.0-17.5	12.5-15.0	10.0-12.5	7.5-10.0	5.0-7.5	<5.0
Distance to pier (km)	< 4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-7.0	7.0-8.0	>8
Distance to land facility (km)	< 5	5-5.5	5.5-6	6-6.5	6.5-7	7-7.5	7.5-8	> 8

• Weighting: MCE method known AHP (Saaty, 1977)

Socio-infrastructural and Constraint models

Environmental models

Final suitability maps (2004-2011)

Different suitability levels (expressed as percentage of the total potential area) with ENSO events for Japanese scallop aquaculture site selection in Dalian, China

Year	Suitability scores (%)						ENSO events		
	1	2	3	4	5	6	7	8	
Apr-May 2004	0.0%	0.9%	3.0%	26.2%	49.0%	13.6%	6.3%	0.9%	Normal
Apr-May 2005	0.0%	0.0%	7.6%	29.5%	41.4%	15.1%	5.7%	0.7%	Weak El Niño
Apr-May 2006	0.1%	0.6%	3.1%	32.6%	39.4%	15.9%	6.8%	1.4%	Normal
Apr-May 2007	0.1%	0.7%	4.1%	27.5%	49.2%	12.8%	5.3%	0.3%	Weak El Niño
Apr-May 2008	0.3%	5.6%	5.0%	26.8%	40.7%	15.3%	5.1%	1.2%	Moderate La Niña
Apr-May 2009	0.0%	0.1%	2.9%	35.1%	40.0%	14.5%	6.3%	1.1%	Normal
Apr-May 2010	0.0%	0.1%	18.0%	26.9%	37.6%	13.4%	3.9%	0.1%	Strong El Niño
Apr-May 2011	0.0%	0.0%	4.3%	33.8%	39.6%	16.1%	5.5%	0.6%	Moderate La Niña

Conclusions

- GIS-based model is an effectively tool to identify the most suitable areas for Japanese scallop development.
- Changhai County and Lushunkou areas have more potential area for scallop aquaculture development.
- Change of sea surface temperature significantly affected the suitable areas.
- Climate condition needs to be considered for future development of marine aquaculture.

Thank you very much

Laboratory of Marine Bioresource and Environment Sensing, Faculty of Fisheries Sciences, Hokkaido University, Japan.

E-mail: yangliu315@salmon.fish.hokudai.ac.jp

