Yeosu,Korea May.15-18, 2012

Two different Hypoxic Cases: Kangjin Bay, South Sea Chunsu Bay, Yellow Sea, Korea

May 17, 2012 (S7)

î m

Young Jae Ro¹, Baek Jin Kim¹ Kwang Young Jung¹ and Kwang Soon Park² ¹Dept. of Oceanography, College of Natural Sciences, Chungnam Natl. Univ. ²Korea Ocean Research Development Institute (KORDI) 2012, Yeosu EXPO May 17, 2012

Chunsu Bay, Yellow Sea

Kangjin Bay, South Sea

Similarity

- Small Estuary (~ 10s Km)
- Strong Tidal Circulation
- Intermittent Dam Water Discharge

Differences

• Chunsu Bay

- Eutrophic Turbid Water from Inland Lakes
- Oxygen Consumption by bloom of micro-algae in the water column

• Kangjin Bay

- Fresh Clean Water from NG Dam
- Oxygen Consumption by SOD at bottom & no oxygen supply by stratification

Introduction, the Chunsu Bay

- Artificial Dyke Construction for Reclamation and Land Use → Northern Passage Blocked
- Tidal Circulation Change in the Chunsu Bay
- Pollutant Load and Reduced Dilution and Transport out of the CS Bay
- Frequent Hypoxia/Anoxia Occurrences in the Summer Time
- Reduced Fishery Production

So Many Issues with Questions

Many Dam Constructions in the coastal Embayment in Korea since 1970s

- Dam Water Discharge
- Pollutant Load
- Salinity Decrease and Stratification
- Eutrophication \rightarrow Red Tide
- Hypoxia Formation
- Reduced Ecosystem Health

Intensive Field Measurements

- Current & direction(ADCP)
 - Jul. 29~Aug.30, 2010 (32 days)
 - Current Speed and Direction
 - Sampling interval : 10 min
 - Obs. Layers : 14 (1 m)
- Surveys
 - N-S cross section
- Seasonal and Summertime-monthly field works
 - Temperature & Salinity
 - Dissolved Oxygen, pH, Turbidity, Chlorophyll
 - COD, DOC, C, TN, TP, Si, etc.
 - Total 27 water quality parameters

Discharge Information

D Total discharge volume (2010) : 700 million ton/year

- Kanwol A-district tide-embankment : 430 million ton/year
- Bunam B-district tide-embankment : 260 million ton/year
- Discharge took place for 3~4 hours
 - with discharge rate : 400 m³/sec (KW), 200 m³/sec (BN)
 - twice a day (during ebb~low tide)

Tide- Embankment	A-district	B-district
Length(km)	6,458	1,228
Floodgate	8 gates(102m)	4 gates (35.6m)
Open	4~6 gates	2~3 gates

Discharge Volume (Daily)

Tidal Height & Discharge Rate Curve (1 Tidal cycle)

Observations: Result 1- Current

-30

36.40

36.45

36.50

Latitude

36.55

36.60

Obs. Result 2– Salinity, DO and Chlorophyll

2010.7.26 (D.O.) 2010. 7. 26 (Salinity) 0 5 10 30 10 15 35 7 ppm — 25 psu 20 psu 0 Зррт 0 St. 10 - 15 psu -5 -5 St. 9 St. 10 St. 8 -10 St. 9 -10 Depth (m) Depth (m) • St. 8 St. 7 -15 -15 St. 7 St 6. St. 5 St. 6 -20 -20 St. 4 St. 5 -25 -25 St. 3 St. 4 - St. 3 St. 2 -30 -30 D.O. (ppm) St. 1 Salinity (psu) - St. 2 Oversaturation 2010. Chunsubay Chunsubay - 2010. 07. 26 Stratification. -5 -5 -10 -10Depth(m) 12 Depth(m) 12 Нурохіа -20 Max. : 13.8 ppm -20 Max.: 13.9 DO(mg/L Salinity(psu) -25 Min. : 2.9 ppm -25 Min.: 30.7 -3036.40 36.45 36.45 36.55 36.60 36.50 36.55 36.40 36.50 Latitude **High Concentration** Latitude - 2010. 07. 26 Chunsubay During Discharge : Kanwol & Bunam Lake -5 $(7.24 \sim 26$: Total Discharge amount 5.4×10^7 ton) -10 Depth(m) DO: Oversaturation at surface Hypoxia formation at Bottom Chl(ug/L) Salinity : Strong Stratification Max. : 57.6 µg/L -2524 36 48 60 Chlorophyll : high concentration at surface

Model Specification and Modeling Cases

Model Result – Current Field

Model Result – Tidal Current (Spring / Flood)

• Northern Part : 0~10 cm/s

• Southern Part : 20~50 cm/s

Model Result – Residual Current

- Northern Part : 10~40 cm/s
- Southern Part : 5~15 cm/s

i Iuai Residuai + Delisity Culle

- Northern Part : Density Current
- Southern Part : Tidal Residual Current

Model Result – Salinity Field (Surface) Animation

Salinity Change

Particle Trtajectory

Model Result – Particle Tracking Exp.

Summary-1 : Field Observation

• Obs. Results of WQ parameters in the Chunsu Bay

- (1) Strong Stratification formed due to Dam Water Discharge
 - Salinity drop by 13.9 psu
 - Region of Influence down to the middle part of Chunsu Bay
 (5 psu difference between surface and intermediate layer)

(2) Hypoxia Formation : Jul. 26, 2010 / Aug.3,2011

- Raipd decrease of DO Conc. toward the Dam in the north
- Observed Hypoxia with 1~2 m thickness under 3 ppm at Bottom

(3) Increase of Chlorophyll in the surface layer

- Max. 57 µg/L Cha,
- Saturation DO: 120~160 %

ADCP measurement

- Residual current to the North
- Good agreement between Dam water discharge record and southward residual Current

Summary-2 Model Exp.

Circulation Modeling Exp.

• (1) Tide Model

- Entrance: 2~4 m/sec strong tidal current
- S. Jukdo~Entrance: moderate 0.5~1 m/sec
- Kanwol/Bunam: weak current with 0.2~0.5 m/sec

(2) Tide+Discharge Exp.

- SSS 2~15 psu Drop
- Bottom Salinity 1~3 psu drop
- Change of circulation due to density driven current

(3) Particle Trajectory

- Kanwol Lake: realistic trajectory reproduced

10 day reached mouth of the CS Bay

- Bunam Lake: 4~5 days to Jukdo Island

10 day reached mouth of the CS Bay

Hypoxia in the Kangjin Bay

Time Series in Aug., 2004

- Start at 04/08/17 23:37 296.4 (cms)
- Peak at 04/08/19 01:38 3523.4 (cms)
- Ends at 04-08-30 11 37.03 49.0
- Total
 - Period ; 12 days 12 hours
 - Volume ; 830,176,000 ton (0.83 billion ton)
- Salinity Minimum occurred
 - on 8/24/04 19:17
 - (5 days and 17 hours later)
 - Salt = 10.63 (psu)
 - Temp= 22.66 do=6.22

Vertical Profile of DO

June, 2004

July, 2004

Aug., 2004

35.00

20 10 11 14.90

34.85

34.60

Cross sectional distri. of Salinity

DO Cross Section in Summer, 2004

Hypoxic Events after Fresh Dam Water Discharge

DO & Salinity Change Animation

Dissolved Oxygen

Salinity

Implication to Ecosystem

• Physical Conditions

- Water circulation by Tide
- Fresh Water and nutrients Supply
- Eutrophication vs Flushing of the Bay Water
- Stratification and Strong Pycnocline
- Oxygen Production vs Consumption
- Hypoxia Formation
- Health of the Ecosystem
 - Dramatical Change in Salt, DO, etc
 - Large Mortality of Clam-shell (Scaborcha Brouhtonii)
 - Fishery Collapse

Tolerance for the dam water discharge Smart Way to Release How much water can be discharged without causing Hypoxia and Clam-Shell Fishery Collapse?

Thank you for Your Attentions !