

Climate change influences on India's Marine Fisheries

Presented by

Dr.(Ms).V.Kripa,

Principal Scientist Central Marine Fisheries Research Institute (CMFRI), Kochi

Co authors : E.Vivekanandan, P.U.Zacharia, and A.Gopalakrishnan

Kripa -CMFRI; 3rd International Symposium

Profile of Indian Marine Fisheries

Length of coastline **Fishing villages**

Marine fishers population Active fishers population

Landing centers	1,511
Major fishing harbours	26
Minor fishing harbours	38

8,129 km 3,288 3.9 million 0.9 million

Kripa -CMFRI; 3rd International Symposium

How the Exploitation is Carried Out

- 5 major Gears
 - Trawl
 - Bagnets
 - Gillnets
 - Seines
 - Hook & Line

Major Crafts

- Mechanized
- Motorized
- Non-mechanized
- More than 25 craft gear combinations

	Number	Catch (lakh tonnes)	% contribution
Mechanized	72559	30.8	78
Motorised	71313	7.8	20
Non mechanised	50618	0.8	2.2

Structural shift in the capital investment

Private capital investment in fishing equipments

Indian Marine Fisheries - Percentages

Gross value	US\$ 7.2 billion
Export Value	US\$ 4.5 billion: ~65%
	marine capture
% in total exports	3%
Domestic markets	81% fresh; 5% frozen
	6% dry; 5% fish meal
Per capita fish consumption	2.85 kg (range 39 – 0.3)
Share in GDP	~1%
Share in agricultural GDP	4.5%
Kripa -CiviFRI; 3rd Inter	national Symposium

India Vs World – Marine Catch Trends

India

Global

Continuing to grow & expand

Estimates of carbon emission from marine fishing crafts

Source : Vivekanandan et al 2013.Carbon footprint by marine fishing boats of India.Current Science. 105 (15): 361-366

Different types of seines in which more than 20 fishermen are involved in fishing —they fish shoal farming small pelagic fishes

A small harbour in Vypin Island -Kerala

Kripa -CMFRI; 3rd International Symposium

Carbon footprint by marine fishing boats of India

Figure 1. Change in composition of fishing boats (% of total number of boats) in India.

Kripa -CMFRI; 3rd International Symposium

76.2

2010

Contribution of mechnazied craft

to overall landing (%)

15.3

1961

Disel consumption equivalent to CO2 emission (million tones (mt))
3.6
0.31
1961
2010

Carbon footprint by marine fishing boats of India

Considering global estimate, India's emission intensity **is low** by <u>about **40%** per tonne of</u> live weight landed.

Kripa -CMFRI; 3rd International Symposium

on CC

Climate change impacts on fish distribution and phenology

Source : Results of network project on climate change

Kripa -CMFRI; 3rd International Symposium on CC

Sensitiveness of Fish to Temperature

 Some fish are sensitive to even 1°C rise in temperature

- However, the temperature has to increase beyond a certain threshold for a visible impact
- Generally, those with short life and quick generation turnover adapt
- They try to adapt by shifting the area of distribution; and/or effecting phenological changes
- Fishing technology masks the effects

Changes in Distribution and Phenology

- Category 1: Extension of distributional boundary (Indian oils sardine)
- Category 2: Change in biomass (Indian oil sardine)
- Category 3: Shift in depth of occurrence (Indian Mackerel)

Oil Sardine Sardinella longiceps

- Coastal, pelagic, schooling fish
- Maximum size 20cm

Case study

- Massive fishery in India; probably the largest stock in the Indian ocean
- Crucial role in marine ecosystems as a plankton feeder and as food for larger fishes
- Annual production : 3.8 lakh tonnes (15%)
- Total value : Rs. 350 crores
- Low priced; staple sustenance and nutritional food for millions
- A tropical fish with preference for SST > 28°C

Extension of northern boundary of oil sardine

(the colored lines indicate percentage of All India oil sardine production)

Distributional Changes

- With warming of the sea, the fish is able to find temperature to its preference in the northern latitudes and eastern longitudes, thereby extending the distributional boundaries and establishing fisheries in larger coastal areas.
- These distributional shifts are expected to <u>result in</u> <u>drastic changes in species mix and ecosystem</u> <u>structures and functions.</u>
- Will this trend pave the way for species replacement?

Banse, 1959, Pillai *et al.*, 1980, Yohannan and Abdurahman, 1998, Longhurst and Wooster, 1990, Madhupratap *et al.*, 1994, Jayaprakash, 2002 and Xu and Boyce, 2009)

- The IEEZ was divided into six regions such as
- South West EEZ (SWEEZ),
- South East EEZ (SEEEZ),
- North East EEZ (NEEEZ),
- North West EEZ (NWEEZ),
- Lakshadweep EEZ (LAKEEZ) and Andaman EEZ (ANEEEZ)

Sardine fishery fluctuations

- Upwelling helps in increasing productivity and this supports sardine spawning and recruitment
- But studies on sardine catch and upwelling has shown that if hypoxic waters are present in coastal waters before spawning this can prevent spawners from entering the spawning ground.
- Hypoxic conditions also affect larval survival

S.W MONSOON

The normal rainfall during the southwest monsoon over Kerala from 1871 to 2008 was 1924.9 mm with a coefficient of variation of 19.3%. The monthly rainfall was relatively undependable with August and September having a coefficient of variation of 41.5 and 54.1 per cent respectively

Adaptation to seawater warming – Indian mackerel (*Rastrelliger kanagurta*)

- Coastal, pelagic, tropical fish
- Maximum size 32cm
- Massive fishery in India;
- Crucial role in marine ecosystems as a plankton feeder and as food for larger fishes
- Annual production : 1.4 lakh tonnes (5%)
- Total value : Rs 350 crores
- Staple sustenance and nutritional food for millions

Case study

Indian mackerel :descends to deeper waters

- Indian mackerel generally occupies surface and subsurface waters. conventionally caught by surface drift gillnets by artisanal fishermen.
- In recent years, the fish is increasingly getting caught in **bottom trawInets operated** by large mechanised boats at about 50 m depth.
- Now, about 10% of the mackerel catch is by the trawlers.
- This shows that the fish descends down to overcome warmer surface waters.

Phenological changes in threadfin breams

One of the dominant

demersal resources of India

- 32 cm Maximum size:
- Annual production : 1.2 lakh tonnes (5%)
- Total value : Rs. 360 crores
- A prolonged spawning seasonality ٠
- Shift in peak spawning activity towards cooler months in the last 20 years, off Chennai

Nemipterus japonicus

27

Case study

Strong upwelling –low bottom water temp gives good catch of *Nemiterus japonicus*

- Very strong relation to bottom water temperature
- Catch above 2000 tonnes were recorded when the bottom water temp were less than 25 deg C (average=23.8 deg C)

Impacts of low pH on Meroplankton

 Low Ph was observed during September and October in the coastal waters in some years, mainly due to anthropogenic impacts.

 The plankton community during this period showed considerable changes

Change in zooplankton community structure

- Macro zooplankton dominated the community
- Calciphorous zooplankton (bivalve larvae, pteropods and phyllosoma) and micro-zooplankton were found to be negatively impacted
- Low biomass of micro-zooplankton can negatively affect fish recruitment.
- Phyllosoma and bivalve larvae were absent indicating that fishery of these shellfish stocks can be affected. August and September are the spawning months of bivalves especially mussels.
- However, larger crustacean larvae were not affected, indicating a size based vulnerability to ocean acidification.

Bleaching events in the Indian Seas

Location	Month/Year	Mortality/Bleaching
Gulf of Mannar	June 1998	60% branching forms lost
Lakshadweep	May 1998	78% mortality
Andaman Islands	May 1998	Up to 50% dead
Nicobar Islands	May 1998	Up to 20% dead
Gulf of Kachchh	May 1998	10-30% bleaching
Palk Bay	April 2002	60% affected

Coastal waters- an area where small scale fishers depend on the natural resources

Kripa -CMFRI; 3rd International Symposium on CC

Cast net fishers

Artisanal fisheries

- Coastal waters provide livelihood to several artisanal small scale fishers
- Increased no.of rainy days affects livelihood

Clam fishing is an imp coastal livelihood

 Flooding leads to loss in fishing days

CC

The whole family takes part in the harvest, post harvest and marketing. So when there is loss in fishing days it affects the whole family

Kripa -CMFRI; 3rd International Symposium on CC

Vulnerability and perception of fishermen towards climate change

Results of the IDLAM -Integrated District-level adaptation and mitigation <u>component</u> of NICRA project

Coastal population

More than 100 million people of the Indian population live along the 7510 km country's coasts, with an average population density of 455 persons per km² which is about 1.5 times the national average of 324 (Census, 2001)..

The fishermen perception on CC..

The assessment begins.....

Kripa -CMFRI; 3rd International Symposium on CC

Alapuzha district of Kerala

The survey was done in Alapuzha district which has

- 30 fishing villages
- 20278 fishermen families.
- Traditional fishermen 20024 (98.74% of total fishermen families) of which 10244 (50%) are below poverty line
- 51 mechanized boats,1015 crafts with outboard and 1766 boats are non-motorised

Cits Houses are built very close to the sea thereby increasing the vulnerability to CC impacts

> Seawall as protection from monsoon waves –This will prevent sea erosion. Still.....

RIsk

Beaches are important landing centres

Country crafts with fish catch and auctioning at the landing centre

It has been observed that sea level rise of 1 mm per year could cause a recession of shoreline in the order of about 0.5 m per year

Kripa -CMFRI; 3 - Anternational Symposie

The approach...... info on fishermen perception collected through planned surveys

Beaches are imp landing centres, and is the major site where auctioning of fish catch is done and place where crafts are berthed.

When beaches erode, or when CC impacts beaches, the fishermen are directly affected

Inferences from the survey

Factors which increase vulnerability of fishers	How vulnerability is increased
<u>Low level of awareness</u> about climate change	Makes fishers more vulnerable to CC impact
Low literacy rate	Unable to accept /adopt protective measure
Lack / inadequate level of sanitation and health care facilities	Fishers more vulnerable to spread of epidemics consequent to flood or inundations / cyclones

Factors which increase vulnerability of	How vulnerability is
fishers	increased
Lack of protection shelters, wireless	Exposes fishers to more
weather communication tools, poor/	vulnerable situations
bad roads	
Distance between residential area	High vulnerability to
and the coastline very low	sea erosion; SL rise
Unplanned developmental activities	Has led to sea water
(construction and destruction of	intrusion during high
habitats)	tides since most villages
	are low lying areas

Floods are common and coastal villagers are affected by water logging

Kerala – Incessant rains during monsoon Picture of an India & news paper

More droughts-more water scarcity

- Women in coastal areas have to spend considerable energy and time to source drinking water for the family.
- The most disastrous drought was noticed in the year 1953 during the decade 1951-60 for the first time, followed by 1983, 1991 and 1996 in recent decades.
- The occurrences and intensity of droughts were increasing in the recent decades.

More stress for coastal women to source water for families

Water scarcity

- The analysis of decadal water level trend (1996 2005) indicates that 13% and 30% of monitoring wells are showing declining trend of more than 0.1m/yr for pre-monsoon and post monsoon data respectively (CGWB data)
- Indicates more stress for coastal fisher families who depend on ground water
- Government is promoting rainwater harvesting schemes

Adaptation and mitigation

- Mangrove restoration
- Strengthen basic amenities in coastal villages (drinking water, good sanitation etc)
- Increase disaster preparedness

Traditional fish culture

 Of the four main activities in traditional fish farming, only one activity uses energy.

- Identify alternate avocation for villagers to compensate for loss in fishing days
- This will vary from in different villages and will depend on availability of raw material

Coir making is a good additional alternate avocation option in some villages of Kerala

Mangrove restoration is imp

Coastal areas are important breeding ground and nursery of valuable biota

By **improving** habitats, the ecosystem productivity can be increased which will increase the income earned by coastal fishers; which can to some extent reduce vulnerability and loss of fishing days

Kripa -CMFRI; 3rd International Symposium

Involving younger generation in restoration programs

Involvement of villagers is important

CMFRI -Climate awarness mission

Mangrove planting in shallow extensive and semi-intensive shrimp ponds to abate stress due to high temperatures

Supporting artisanal aquaculture activities

Kripa -CMFRI; 3rd International Symposium

The	e major Climate Preparedness activities (CPAs)
rec	ommended as management advisories for increasing
the	preparedness of coastal villages to impacts of CC
	Climate Preparedness Activity (CPA)
1	Increase awareness among fishers on climate
	change and related threats to the livelihood
2	Increase the adaptation and preparedness
	through proper scientific interactions and
	trainings
3	Strengthen alternative avocations available
	across the different fishing villages to negate
	the risks and uncertainties of CC

4	Develop location specific elevation levels for new
	settlement areas under the town planning acts after
	proper assessments to avoid damage to sea erosion.
	Rules to be strictly enforced
5	Develop local infrastructure (roads, health
	supports, protection shelters etc) for reducing CC
	vulnerability

	Climate Preparedness Activity (CPA)
6	Train and involve fishers for disaster
	preparedness / evacuation (There are
	rograms like Jana Jagrithi Samithi in Kerala)
7	Strictly regulate unplanned coastal activities
	which would affect tidal amplitudes in village
	canals/ riparian areas

8	Since fishermen are forced to move out
	to deeper areas, protection aids must
	be made available even for traditional
	/artisanal fishers.
9	Strengthen seawalls and bioshields
	(In Kerala there are programs like
	Theeravanam (coastal forestry)

Disaster management in Idia

- The natural disaster management system in the country is very good.
- Can get warning on state of sea
- Advice fishermen to abstain from fishing

Cyclone *Phailin* in India

- Phailin became a very severe cyclonic storm on October 10, 2013 equivalent to a category 1 hurricane
- Around 12 million people affected.
- As part of the preparations, 600 buildings were identified as cyclone shelters and people were evacuated from areas near the coast, including Ganjam, Puri, Khordha and Jagatsinghapur districts in Odisha
- The cyclone prompted India's biggest evacuation in 23 years with more than 5,50,000 people moved up from the coastline in Odisha and Andhra Pradesh to safer places

Affected villages

Natural Disaster management in India Shifting fishers to safer places during cyclone

Big disasters are well managed. But factors affecting daily life has to be given more importance

Future work

- We are on the way towards developing climate models for fisheries resources
- Have data and we need more collaboration
- Need more guidance on ocean acidification related work
- Overall impacts on marine ecosystem services is being evaluated

Thank u PICES for sponsoring and for the invitation and for the opportunity for presenting India's research highlights on impacts of CC on marine fisheries

Kripa. U Judia