www.devotes-project.eu

Long-term trends in the biomass of commercial fish in the North Sea fishing impacts, predator-prey interactions and temperature change

S10 Forecasting climate change impacts on fish populations and fisheries
Thursday 26 $^{\text {th }}$ March 2015

Christopher Lynam

Pierre Helaouet
Christian Möllmann
Marcos Llope
fizzyfish

Roddy Mavor
Georgia Bayliss-Brown
Nils-Christian Stenseth

Motivation

"Forecasting climate change impacts on fish populations \& fisheries" Requires a strong understanding about the dynamics of the system

Why?

- To give strategic advice on potential response of the system to pressure (climate, fishing, ...)
- Evaluate potential management strategies
- Explore trade-offs and sensitivities

How?

- Modelling - which can take a number of forms

Statistical approach

Empirical - data driven combined with expert guidance

Use evidence to determine key signals in the data and capture the temporal dynamics of the system

- Bottom-up control (driven by temperature)
- Top-down control (fishing pressure down)

Requires a lot of data

- Long time-series data (1964-2010)
- Sea surface temperature (Hadley centre plus AMO)
- Phytoplankton abundance (SAHFOS)
- Zooplankton abundance (SAHFOS)
- Fish stock biomass and fishing mortality (ICES)
- Marine bird breeding success (JNCC, 1989-2010)
- Statistical modelling:
- Generalised Additive Model (GAM)
- threshold-Generalised Additive Model (tGAM)
- Expert knowledge of the system

interaction web

simulations

Recreated solely

 from initial conditions for plankton and fish in 1964+ time-series of fishing mortality by stock
+ SST
+ AMO
E

How generate simulations non-mechanistically?

- Behind each arrow in the interaction web is a significant relationship modelled using either GAM/tGAM

Example - GAM fitting to the SSB of saithe

saithe in year z

~ intercept
+s (Fishing mortality year z-1)
$+s(s a i t h e ~ y e a r ~ z-1) ~$

+ s(haddock year z-1)
$+s(N$. pout year z-1)
$+\varepsilon(0,1)$

Repeat previous step separately for each component e.g. sandeels

How important are indirect effects/cascades?

Proportion of deviance explained by groups

Bottom up
Top down

Building simulations

- Starting from the initial conditions 1964
- use F, SST and AMO values to predict 1965 values
- include noise from residuals from GAMS/tGAMS (resampling)
- For the next time step (1966), use set of predictions from above plus new F, SST and AMO values
- Repeat for length of drivers
(observed data / scenario)

```
saithe in year z
~ intercept
+ s(Fishing mortality year z-1)
+ s(saithe year z-1)
+ s(haddock year z-1)
+ s(N. pout year z-1)
+ }\varepsilon(0,1
```


Temperature scenarios to explore

shift 1984-1990

Fishing scenarios to explore

Simulations

Recreated solely from initial conditions for plankton and fish in 1964

+ time-series of F
+ SST + AMO

8
\%
1

Simulation without SST rise since 1984

Simulation with 10\% SST rise (1990 on)

Some effect of climate, but fishing has been such a strong effect that it has masked the full impact on the North Sea system

What would happen if we reduced fishing? More sensitive to climate?

Blue: 80\% reduction in F Red: 10\% decrease in F Grey: 50% decrease in F Black: observed F

- Diatoms benefit in warm temperatures
- C. helgolandicus benefit from warm temperatures
- C. finmarchicus benefit from warm if diatoms increase
- Dinoflagellates decline when warm, increase with cold
- C. finmarchicus benefit during cold temperatures
- Small copepods (Acartia, Temora, Para-pseudocalanus) benefit from cold
- Zooplankton decline as fishing pressure lowered
- Diatoms increase as fishing pressure lowered if warm

Observed			1970/80s
SST	$+10 \%$ SST	-10% SST	SST (cold)

Saithe
Whiting
Cod

Blue: 80% reduction in F Red: 10\% decrease in F

Cold preference

- Dinoflagellates
- Sandeel
- Herring
- Cod

Warm preference

- Diatoms
- C. helgolandicus
- Sprat, Norway pout, saithe

Key interactions during warm period

- C. finmarchicus benefit if diatoms increase
- Haddock benefit when both diatoms and C. finmarchicus do
- Whiting - mixed response - decrease if sandeel decrease (greater than sprat increase)

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

www.devotes-project.eu

'Effects of climate change on the world's oceans' Santos City, Brazil, 23-27 March 2015
S10 Forecasting climate change impacts on fish populations and fisheries

