

Effects of elevated *p*CO₂ and temperature on prokaryotic community composition and respiration in mesopelagic waters of the NW Mediterranean Sea

Markus G. Weinbauer¹, Chiaki Motegi¹, Jinwen Liu², Cornelia Maier¹, Maria-Luiza Pedrotti¹, Minhan Dai² & Jean-Pierre Gattuso¹

Laboratoire d'Océanographie de Villefranche, CNRS/UPMC, France
Xiamen University, China

 pCO_2 , temperature and prokaryotic plankton

Effects of ocean acidification for the diversity and activity of prokaryotic plankton have been demonstrated in SOME studies with surface waters

Elevated temperature should stimulate prokaryotic activity (respiration, enzymatic activity)

Nothing is known for mesopelagic prokaryotic plankton

Objective

To investigate the effects of elevated pCO₂ and temperature for the community composition and respiration of prokaryotic plankton in mesopelagic waters of the NW Mediterranean Sea

Weinbauer et al. AME 2013

Study Site

Sampling: Bay of Villefranche, France Point C (Lat.43°40'N, Long.7°18'E) Depth: 300 m

Short-term perturbation experiments

Five short-term experiments (5 days, between 2008 and 2009)

pCO2 Temperature 13° C 16° C **Pre-industrial** Ambient (400 µatm) Two values higher than ambient End of century (1000 µatm) Higher than end of century

Approach

Establishment of desired pCO2 levels by bubbling all treatments for 30 min with various mixtures of pCO2 reduced air and pure CO2.

Incubation of 5L bottles in a temperature controlled chamber in the dark with water tanks heated to 13° C and 16° C.

Prokaryotic respiration along the pCO2 gradient

Ехр	13°C		16°C		
	T3d	T5d	T3d	T5d	
STE-1			+		
STE-2			-		
STE-3	+		+	+	
STE-4	Hump				
STE-5	+	+		-	
+,-: pos logaritl łump: 2 nd c	s or neg re hmic, expo order polyr signif	lationship nential or iomial fun icant; p>0	based on power fur ction (in co).05)	linear, nctions ase +/- not	ŀ

In nine out of 20 cases (five experiments times two time points times two temperatures), a significant relationship between PR and pCO2 levels was found, however, the trend was inconsistent.

Average PR did not differ significantly between temperature treatments except for STE-8 (T3d); however, in five out of 20 cases, the PR vs pCO2 gradient patterns differed between temperature treatments.

Differences of metabolic and structural composition of communities could explain that and such differences have been detected for the communities collected for the experiments.

Alternatively, the observed patterns represent stochastic events and mesopelagic communities are insensitive or resistant to elevated levels of pCO2 or temperature.

pCO2 levels in LT-I

Two long term experiments (LTE; July 2009 and November 2009)

The experimental system was stable during the two months incubations with respect to the intended pCO2 manipulation (Same results for 16°C and for LT-2)

Cluster analysis of DGGE band patterns: LTE2

Genetic fingerprint (16S rRNA gene): Bacteria

Difference of DGGE pattern from control

		pCO ₂	Temp	pCO2& Temp
Bacteria	LTE1	no	yes	yes
	LTE2	yes	yes	yes
Archaea	LTE1	no	yes	no
	LTE2	no	yes	no

Not only community composition, but specific bands were affected by pCO₂ and temperature, however, the trend across experiment were weak. Members of the Flavobacterium/Cytophaga/Bacteriodes group seemed the group affected most by the tested climate change factors.

Summary of effects on prokaryotic respiration

		pCO ₂	Temp	pCO2& Temp
LTE-1	T28d	-	+	-
	T59d	no	+	+
LTE-2	T29d	no	+	no
	T60d	-	no	no

Elevated pCO2 had a neutral or neg effect of PR, whereas elevated temperature had a neutral or pos effects on PR (the latter also at T0d), whereas the for the combined 'stressors' no consistent effect a found.

Summary: long-term experiments

- * Elevated pCO2 levels had neutral or negative effect on PR
- * Elevated temperature had a neutral or positive effect on PR
- * Temperature effects were more consistent than pCO2 effects
- * No additive affects were detected; rather the effects of pCO2 and temperature seemed to neutralize each other

* Reduced PR at elevated pCO2 levels suggest reduced remineralization and thus likely enhanced carbon export (priming the biological carbon pump)

- * Enhanced PR at elevated temperatures suggest enhanced remineralization and thus likely reduced carbon export (shortcircuiting the biological carbon pump)
- * The data suggest antagonistic effects of OA and global warming for prokaryotic respiration
 - * Our study suggests that an assessment of pCO2 scenarios for microorganisms needs to include the effect of global warming
 * Finally, the climate change related experiments suggest an influence on bacterial and archaeal community composition; consequences are difficult to predict

Acknowledgements

European Project on Ocean Acidification'(EPOCA; European community contract #211384)

MedSea project (European Community contract #265103)

ANR-AQUAPHAGE (no. ANR 07 BDIV 015-06) and ANR-MAORY (no. ANR 07 BI.AN 016) from the French Ministry of Science

Sailors of the Observatoire d'Océanographie de Villefranche

Changes in bacterial community composition -LTE1-

Changes in Archaeal community composition -LTE1-

Summary

In LTE1, bacterial community composition clearly differed between ambientand elevated temperature treatments. At elevated temperature, the bacterial community differed between the two pCO_2 levels.

In LTE2, both bacterial and archaeal communities responded to changes in temperature, but inconsistent with the LTE1, bacterial community clearly differed between the two pCO_2 levels at control temperature

Temperature and pCO₂ changes can potentially affect prokaryotes community composition; temperature changes had a stronger effect on the mesopelagic prokaryotic community.

Changes in bacterial community composition -LTE2-

Changes in Archaeal community composition -LTE2-

OTU richness -LTE1-

LTE-I-16oC400-A-T59 LTE-I-16oC400-B-T59 LTE-I-16oC400-C-T59 LTE-I-16oC1000-A-T59 LTE-I-16oC1000-B-T59 LTE-I-16oC1000-C-T59

Cluster analysis of DGGE band patterns -LTE1-

Bacteria

UPGAMA, Dice coefficient

Cluster analysis of DGGE band patterns -LTE1-

Archaea

UPGAMA, Dice coefficient

Cluster analysis of DGGE band patterns -LTE2-

Archaea

UPGAMA, Dice coefficient

