Climate change in the shallows – interacting effects of diel-cycling hypoxia and acidification*

Denise Breitburg Andrew Keppel Seth Miller Rebecca Burrell

*unpublished student data removed from presentation

Multiple stressors – management, understanding

Multiple stressors – management, understanding

Costa Rica Dome 0-1000 m

Estuarine salt marsh 1 m

Breitburg et al., in press; data from Maas et al. 2014, Breitburg et al., unpublished

Shallow Chesapeake Bay high productivity restricted circulation nutrient enriched high respiration

seasonal & diel-cycling hypoxia Diel-cycling hypoxia and acidification

- Patterns?
- Do diel-cycling acidification and hypoxia affect native species in spite of potential adaptation and daily periods of recovery? (Experiments with oysters & fish)

Contrasting patterns at 3 sites in Chesapeake Bay '

'Classic' diel cycling[,]

Bear Creek

MD-DNR: eyesonthebay.net

'Classic' diel cycling[,]

Daylight – Photosynthesis dominates + oxygen, -CO₂

'Classic' diel cycling[,]

Dark – Respiration dominates - oxygen, +CO₂

Salt marsh Creek Rhode River, Chesapeake Bay Strong tidal signal

Tide-dominated pattern: timing of minima vary among days

Stratification on sunny days – Mid-day minima

DO and pH at 2 m continue to decline after dawn

Shallow water cycles of dissolved oxygen and pH

Large spatial variation in timing and magnitude of cycles- different drivers dominate patterns

Spatial variation in ways hypoxia and acidification interact with diel patterns of behavior and physiology Eastern Oyster (*Crassostrea virginica*)

> Disease Growth

Atlantic & inland silversides (*Menidia menidia & M. beryllina*)

> Growth Sensitivity to hypoxia

Burrell et al., accepted pending revision

2012 dissolved oxygen trend

2012 pH trend

Eastern Oyster (*Crassostrea virginica*) Immune response/disease (Dermo – *Perkinsus marinus*) hemolymph pH hemocyte function

prevalence and intensity of infections

Hemolymph pH affected by water pH

Virginia Clark - 2014

<u>Cycling</u> (DO, CO2, DO+CO2) stimulates hemocyte function (cycling down to DO = 0.5, pH = 7.1)

Keppel et al., in review

Stimulation of hemocytes only tends to reduce infection progression when oxygen is high

Juvenile growth cycling down to DO = 0.5, pH = 7.1

Low salinity year Ω_{Calcite} =0.69

The effect of diel-cycling pH differed in high and low salinity/ $\Omega_{Calcite}$ years

High salinity year Ω_{Calcite} =1.87 Keppel 2014

Low pH slightly increases oyster filtration rates

Clark 2014.

2 way ANOVA then Planar regression

Atlantic and inland Silversides-Growth, Aquatic Surface Respiration & Mortality

Growth of juvenile *Menidia beryllina* was lower relative to controls when fish were reared in dielcycling dissolved oxygen or constant hypoxia conditions, but was not affected by cycling pH or constant low pH

Laboratory experiments indicated that simultaneous exposure to low pH can make fish more sensitive to low dissolved oxygen Even brief daily exposures to acidification and hypoxia can negatively affect species that are native to systems with large natural fluctuations

So – Why worry about multiple stressors?

We can't predict consequences or manage effectively if we don't consider the full context in which organisms live

Individual stressors can either exacerbate or reduce effects of other stressors

For mobile species, co-occurrence with other stressors can determine exposure to acidification

Almost all species tested behaviorally avoid low dissolved oxygen. Co-occurring hypoxia may therefore reduce exposure to respiration-driven acidification