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Breitburg et al., in press; data from Maas et 
al. 2014, Breitburg et al., unpublished 
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Gedan et al, unpubl 

Breitburg et al., 2015 
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Diel-cycling hypoxia and acidification 
• Patterns? 
• Do diel-cycling acidification and hypoxia affect 

native species in spite of potential adaptation and 
daily periods of recovery? (Experiments with  
oysters & fish) 

 



Contrasting patterns at 
3 sites in Chesapeake 
Bay ’ 
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‘Classic’ diel cycling’ 

Bear Creek  
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Photosynthesis dominates 
+ oxygen, -CO2 
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R² = 0.76 
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Salt marsh Creek    
Rhode River, Chesapeake Bay 

Strong tidal signal 
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Tide-dominated pattern: timing 
of minima vary among days 



 
R² = 0.9365 
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DO and pH at 2 m continue to decline after dawn 
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Shallow water cycles of dissolved oxygen and pH 
 

Large spatial variation in timing and magnitude 
of cycles- different drivers dominate patterns 
 
Spatial variation in ways hypoxia and 
acidification interact with diel patterns of 
behavior and physiology 



Disease 
Growth 

Eastern Oyster 
(Crassostrea virginica) 

Growth 
Sensitivity to hypoxia  

Atlantic & inland silversides 
(Menidia menidia & M. beryllina) 
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Eastern Oyster (Crassostrea virginica) 

 

  

Immune response/disease (Dermo – Perkinsus marinus) 
 hemolymph pH 
 hemocyte function 
 prevalence and intensity of infections 
Juvenile growth  
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  low oxygen                high oxygen 
hi pH     low pH         hi pH       low pH 
 

(cycling down to DO = 0.5, pH = 7.1) 

Keppel et al., in review 
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  low oxygen                high oxygen 
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 Keppel et al., in review 



Low salinity year 
ΩCalcite =0.69 

 

High salinity year 
ΩCalcite =1.87 

 

Juvenile growth 
cycling down to 

DO = 0.5, pH = 7.1 

Keppel 2014 

The effect of diel-cycling pH 
differed in high and low 
salinity/ ΩCalcite  years 
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2 way ANOVA then Planar regression Clark 2014. 



Atlantic and inland Silversides- 
Growth, Aquatic Surface 
Respiration & Mortality 

Seth Miller 



Growth of juvenile Menidia beryllina was lower 
relative to controls when fish were reared in diel-
cycling dissolved oxygen or constant hypoxia 
conditions, but was not affected by cycling pH or 
constant low pH 



© Dave Conover 

Laboratory experiments 
indicated that 
simultaneous exposure 
to low pH can make fish 
more sensitive to low 
dissolved oxygen 



Even brief daily exposures to acidification and 
hypoxia can negatively affect species that are 
native to systems with large natural fluctuations 



So – Why worry about multiple stressors? 

For mobile species, co-occurrence with other stressors can 
determine exposure to acidification 

Almost all species tested behaviorally avoid low 
dissolved oxygen. Co-occurring hypoxia may therefore 
reduce exposure to respiration-driven acidification 

Individual stressors can either exacerbate or reduce 
effects of other stressors 

We can’t predict consequences or manage effectively if 
we don’t consider the full context in which organisms live 


