

FRA

Research Objective:

What are the situation of hypoxia in the west coast NP?

Critical DO level for various marine organisms

Tentative criteria of "hypoxia" in western NP : 1.4 ml/l (=60 µmol/kg)

FRA

Habitat limitation by oxygen for Atlantic cod in Gulf of St. Laurence [D'Amours, 1993] Figure 4. (a) Belative cumulative frequencies of temperature and temperature × cod for all stations over all strata. (b) Belative cumulative frequencies of exegers and exegers × cod for all stations over all strata. (Computed per R. I. Peny and S. J. Seaich, personnal communication.)

data analyzed : DO

off

Sea

135°E

Japan

.

130°E

45"N

40°N

35°N-

30"N

Not the

 1308 data of JODC for:
 *continental slope area
 *over 30y time length within small rectangle

 DO data are interporated to :
 *isobath: 200m,300m,400m,500m, 600m,800m,1000m,
 *isopycnal: corresponding to above isobath surface at present

Area	Longitude x Latitude	Time rength	data No.
off Hokkaido	144E-146E、North of 42N	1951-2005	404
off Honshyu A	west of 143E, 37N-38N	1951-2005	117
off Honshyu B	west of 142, 35.5N-37N	1951-2005	61
Sagami Bay	insyde of the Bay	1951-1980	146
off Japan Sea	135E-136E、south of 37N	1954-2005	580

140°E

Sagami Bay (Kuroshio)

off Hokkaido

(Oyashio)

off Honshyu a (K/O boundary)

off Honshyu b (K/O boundary)

145°E

- Negative DO trend with statistical significance of α <0.05 for all area except Sagami Bay (Kuroshio region)
- DO decreasing rate: max in Japan Sea (-0.11ml/l/dec)
 *but DO level is still high in Japan Sea continental slope.

 off Hokkaido / Honshyu continental slopes seems in critical phase
 (decreasing rate -0.06 ~ -0.07 ml/l/dec)
 (DO level <1.5 ml/l at present 600m) detailed DO time series off Hokkaido continental slope

 statistically significant DO decrease on all isobaths from 400m to 1000m (rate : - 0.04 ~ -0.09 ml/l/decade)

•hypoxia boundary (DO = 1.4ml/l): ascending from 680m(1951) to 560m(2010) (rate : ~20m/dec)

DO decrease on isopycnals (26.9 ~ 27.4) on off-Hokkaido continental slopes

*DO decreasing rate on isopycnals is in fact, far larger than those on isobath (ca. -0.2 ml/dec)

=>such large trend has compensated by small descending trend of isopycnal surface in off-Hokkaido area.

detailed DO time series off Honshyu continental slope

- singinificant negative DO trend obtained at both
 Honshyu A (400m-1000m) and
 Honshyu B (400-600m)
- Hypoxic boundary in Honshyu A: 800m(1951) =>590m(2010) ascending at 35m/dec

Hypoxic boundary in Honshyu B: 800m(1951) =>700m(2010) ascending at 17m/dec

Ascending rate of CalCOFI hypoxic boundary [Bograd et al., 2008]

CA. -20 ~ -40 m/dec at off California coast

Observed Ascending rate at off-Japan continental slopes (-20 ~ -35 m/dec) resembles to those observed at off California coast.

off-Japan hypoxic disease is still invisible, but ongoing steady!

effect on groundfishes: present distribution of off-Honshyu ground fishes with respect to oxygen

off-Tohoku ground trawl net data from 1997 to 2009

*deepest catch of Pacific Cod (*Gadus macrocephalus*) in each year is extracted

present lower limit of Pacific Cod (2+) catch agrees well to DO=1.4 ml/l hypoxia boundary

Temporal change of Pacific cod habitat depth: a tentative result

 depth-sensitive ground trawl (Seine net) data in 1957 at off-Hokkaido and Honshyu continental slopes

Catch of Pacific cod at over 700m depth has recorded in several stations in 1957 ground trawl data

57		C	lepth[m]				ca [10	tch)kar	of F nn; :	Pacif =37	fic c .5kg
調査年	別 ド月日	表 1 (a)	構装 続き	アプラ	+ ×	1. 1. 1. 1. 1.	ヒレグロ	その他の	289	スケトウ	キチジ
•	7. 23 " 24 " 25	61 C	$630 \sim 670$ $625 \sim 650$ $620 \sim 695$ $620 \sim 680$ $625 \sim 700$ $630 \sim 660$ $630 \sim 670$ 650 - 660	14. 0 12. 0 20. 0 24. 0 28. 0 28. 0 28. 0 8. 0	161.0 189.0 130.0 192.0 175.0 259.0 224.0 141.0						3.0 1.2 5.0 8.0 1.5 1.8
*' -	" 26 27 28 30	N 5 N 7 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8	$650 \sim 670$ $600 \sim 650$ $630 \sim 690$ $620 \sim 660$ $620 \sim 680$ $660 \sim 680$ $685 \sim 710$ 580 600	14.0 28.0 4.0 21.0 35.0 14.0 10.0 5.0 4.0	102.0 100.0 187.0 170.0 80.0 132.0 100.0 110.0 4.0 2.0						6.0 6.0 3.0 5.5 5.0 0.4
•	7. 17	61~62C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0 25.0 20.0 15.0 30.0	45.0 55.0 40.0 25.0 55.0	=					4.0 2.0 1.5 1.5 3.0
	7. 7	62 B	600 600 580 ~ 600 600 ~ 585	1, 0 0. 2 0. 1 0. 5	6.0 10.0 7.0 8.0	2.0 3.0 5.0 12.0	4.0 1.0 2.0 4.0	6.0 1.0 2.0 4.0	1.0 1.0 0.2 0.5	2.0 1.0 0.5 0.5	6.0 0.2 0.4 0.3
*	7.3	68 C R R R R R R R R R R R R R R R R R R	150 150 145 150 148 145 140 135	25.0 28.0 15.0 35.0 20.0 61.0 43.0 22.0	20.0 25.0 14.0 45.0 21.0 50.0 47.0 25.0	21.0 20.0 35.0 42.0 21.0 42.0 45.0 40.0	0.2 6.0 15.0	8.0 14.0 14.0 14.0 0.6 0.2 2.0	0.5 0.4 1.0 0.8	6.0 3.0 6.5 4.0 6.0 1.0 3.0 2.0	13. 0 18. 0 30. 0 24. 0 18. 0 20. 0 15. 0 20. 0
•	7.45	68~69C	140 145 150 155 150 150	35.0 20.0 14.0 28.0 20.0 33.0 21.0	28.0 33.0 7.0 30.0 19.0 22.0 65.0	40. 0 18. 0 21. 0 21. 0 21. 0 21. 0 28. 0	 0.3	7.0 0.5 15.0 0.5	2.0	6.0 6.5 18.0 12.0 7.0 0.5	12.0 6.0 18.0 25.0 4.0 7.5 10.0
•	7.8	76 R # # # #	700 700 690 ~ 750 685 ~ 730	10.0 11.0 54.0 36.0	12. 0 14. 0 42. 0 30. 0	8.0 7.0 36.0 24.0	0.1 0.4 0.3 0.5	4.0 3.0 0.0 5.0	1.0 2.0 4.0 2.0	0000	
:	7.9 #	79 B # # # #	720 ~ 685 700 ~ 690 680 ~ 710 720	35.0 15.0 17.0 30.0	16.0 24.0 24.0 18.0	20.0 18.0 12.0 20.0	0.3 0.5 0.2 0.4	6, 0 5, 0 2, 0 6, 0	1.5 2.5 1.0 2.0	.0	
•	7.6	85 B ""	²³⁰ ~ 190	0.5 0.4	6.0 7.0	2.0 1.0	1.0 2.0	0. 2 0. 5	1.0 1.0	1.0 2.0	8.0 6.0
•	7. 1	89 B * * * *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=	4.0 5.0 3.0 6.0	1.0 0.4	1.0 1.0 0.2	0.3	-	2, 0 3, 0 6, 0 10, 0	6.0 13.0 12.0 18.0

FRA

Habitat depth of Pacific cod in off-Hokkaido/off-Honshyu continental slopes are likely to be ascending in parallel with ascending of Hypoxic boundary.

Conclusion: Oxygen decline in the continental slope waters off-Japan and its potential influence on groundfishes

- It is certain that oxygen content on off-Japan continental slopes are decreasing, and as this result, hypoxia boundary (DO = 1.4 ml/l) has been ascending as same rate as that of NP eastern coasts, ca. $20 \sim 35 \text{ m/decade}$.
- Influence of Hypoxia has not been visible in western NP continental shelf because hypoxia boundary lies still over 550m depth.
- However, it is likely that ascending hypoxia boundary had already exerted some influence onto continental slope ecosystems in western NP.
 In particular, it is quite likely that off-Hokkaido/Honshyu population of Pacific cod had diminished their habitat depth from over 700m to ~575m during the recent 60 years due to the ascending of hypoxia boundary.