

Potential larval connectivity among nearshore marine reserves in Oregon: the importance of temperature dependent pelagic durations and vertical distribution

H. P. Batchelder¹, Jennifer Fisher², and Alexander Kurapov¹

¹COAS, 104 COAS Admin Bldg, OSU, Corvallis, OR ²CIMRS, Hatfield Marine Science Center, Newport, OR

Presentation Outline

- Oregon coastal and marine spatial planning (CMSP)
- Connectivity results from 1 km resolution model for 2002
- Real critter distributions (evidence from NoCal and OR)
- How shifts in vertical location impact transport & retention—2011 simulations using fields from a 3 km data assimilative RT model
- Conclusions and Future Work

CMSP = Coastal and Marine Spatial Planning

- 1) A priority for NOAA Fisheries
- 2) A tool for implementing Ecosystem Based Management
- 3) Multi-sectorial: considers both marine resource harvest and other sectors such as energy siting issues (wind energy, wave energy, etc.)

CMSP in Oregon

Examine connectivity, self-seeding & residence time among specific targeted regions

Caveat: at Territorial Sea scale (3 nm [5 km]), finer model resolution than 1 km is warranted

17724 particles released from CP

(excluding zeros)

Oregon Shelf Marine Connectivity

Particle tracking using ROMS circulation (1 km resolution) of 2002 reveal seasonal and spatial patterns of connectivity among proposed Oregon territorial sea marine reserves.

Shown: Connectivity (% of released particles) reaching another reserve.

<u>Period</u>	<u>1-10%</u>	<u>10-40%</u>	<u>>40%</u>
Downwelling	←	-	-
Upwelling	←		-

Alongshore connectivity is highly seasonal; upwelling periods have high $N \rightarrow S$ connectivity; downwelling periods have high $S \rightarrow N$ connectivity. Alongshore connectivity is greater in winter downwelling. Cape Blanco is a barrier to connectivity, esp. in summer. Larger reserves are more connected than small reserves.

Are larvae swept offshore?

11 year record of cross-shelf distributions of *Balanus glandula* larvae

Strong upwelling in central California increases offshore transport

Roughgarden et al. 1988 Science

Variable physical forcing during the study period March - June

Cross-shelf distributions regulated by ontogenetic depth preferences Northern California, 2005 - 2006

Life history characteristics of the focal study species

Таха	No. larval stages	PLD (days)	Primary release site	Cross-shelf distribution	DVM
Barnacles	6	11 - 21	Sheltered/ exposed	Nearshore	No
Paguridae	5	49 – 90	Exposed	Near – mid-shelf	Yes

Sampling methods Oregon

- Collection methods
 - ~Bi-weekly sampling
 - 1 m net 1996 2000
 - 60 cm bongo 2001- present
 - Upper 20 m
- Distance offshore (8 yrs)
 - 2 and 9 km stations
 - 7 years 1998 2002 & 2009 2011
- Time-series
 - 9 km station (NH05)
 - 13 years (1998 2011)
- Crustacean (crab & barnacle) larvae
 - March June samples
 - Grouped species for presentation

Cancer magister Zoeae stage I

Cross-shelf distributions similar off Oregon

Peterson et al. 1979 Deep-Sea Research

Note: these are animations...

Inner-shelf releases (bottom depths LT 25m) (==barnacles)

Fixed depth trajectories: Red=5m; Blue=15m; Green=Starts

Downwelling (winter) period: Weeks 1-11 (Jan-Mar 2011 starts) Transition period: Weeks 12-15 (April 2011 starts) Upwelling period: Weeks 16-26 (May-Jun 2011 starts)

Note: these are animations...

Midshelf releases (bottom depths of 30-80m) (==Pagurid crabs)

Fixed depth trajectories: Red=10m; Blue=30m; Green=Starts

Downwelling (winter) period: Weeks 1-11 (Jan-Mar 2011 starts) Transition period: Weeks 12-15 (April 2011 starts) Upwelling period: Weeks 16-26 (May-Jun 2011 starts)

Conclusions (1)

- Connectivity very dependent on season
 - higher in winter downwelling—less offshore loss
- Connectivity among adjacent reserves higher than among distant reserves
- Larger reserves have higher connectivity, and higher potential for self-seeding
- Cape Blanco is a barrier to MR connectivity during upwelling; some MR connectivity exists during winter

Conclusions (2)

- Dispersal distances of nearshore (inshore of 25m isobath):
 - similar for 5m and 15m during downwelling
 - shallower particles advected much further during upwelling (and high loss offshore)
- Dispersal distances of midshelf "species" (between 30 and 80m isobath):
 - transport at 10m much greater than 30m depth during both winter downwelling (to North) and summer upwelling (to South)
 - greater loss offshore (not to nearshore MR) in summer

Directions for Future Work

- full analysis of 2011 results
- attempt to simulate entire pelagic life cycle difficult for longer PLDs with small model domain
- determine PLDs using temperature dependent functions
- examine other ontogenetic migrations
- examine effect of diel vertical migrations