To Where the Currents Flow – Larval Dispersal and Connectivity along the U.S. West Coast

John (Jack) Barth¹, Sangil Kim¹, Christopher Edwards² and Patrick Drake²

¹College of Oceanic & Atmospheric Sciences, Oregon State University ²Ocean Sciences Department, University of California, Santa Cruz

Objective: Use regional ocean circulation models to study the dispersal patterns of marine organisms (fish, invertebrates) and the connectivity between adult populations along the U.S. West Coast

Why? -- marine ecosystem dynamics -- marine spatial planning

Some techniques and definitions

•Model planktonic larva as passive particles advected with 3-dimensional currents (u,v,w); easy to add behavior
•May include random vertical walk for mixing
•Pelagic Larval Duration (PLD): time spent by larvae drifting at sea; differs between species (30-180 d)
•Competency time window: time period during PLD when larvae are ready to settle (join adult population)
•Larvae settled at the shallowest place along the coast during the competency time window
•Examine statistics:

- Probability (Settlers from released Latitude/Total Settlers)
- Probability (Settlers at settled Latitude/Total Settlers)
- Probability (Self-seeding settlers/Total Settlers)

Regional Ocean Modeling System (ROMS)

terrain-following s-coordinates in vertical (~40 levels)
Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) winds and surface fluxes
no tides or freshwater input

	California CurrentOregon	
Domain	30.0-48.0 N	40.6-47.5 N
Horizontal resolution	2.5-3.7 km	3.1 km
Vesting	WOA monthly	Navy model
Vertical mixing	Generic Length Scale	MY 2.5
# particles	> 6 million	325,000
Competency Time		
Window	30-60d, 120-180d	15-35d

- Near-shore (\leq 30-m isobath) larval settlement is greatest when the integrated wind is downwelling favorable (> 0)
- Strong relation between the number of larvae \leq 30 m and past 8-day running wind mean
- Best timing for larvae release can be predicted by 8-day running mean wind
 Kim and Barth (2011)

Summary (1/2)

- Regional coastal circulation models compare well with data (seasonal currents, EKE, low-frequency currents)
- Larval dispersal varies with release region, release season and time-since-release
- Releases from southern California
- dispersed north regardless of season (!)
- Major geographic features
- influence connectivity: – Cape Mendocino limits northward settlement
- Point Conception is not a barrier for dispersal from south
- Oregon releases not found south of Pt Arena
- Qualitative agreement with barnacle genetic clines

Summary (2/2)

- Larvae from Heceta Bank can settle to the north
 Heceta Bank is a good source and
- destination for settled larvaeAlongshore difference in settlement agree qualitatively with barnacle recruitment data
- Larvae settle when winds, averaged over the previous 6-8 days, are relaxed or downwelling favorable

Next Steps

- Year-round dispersal and connectivity off Oregon
- Include rivers and tides
- Include larval behavior

