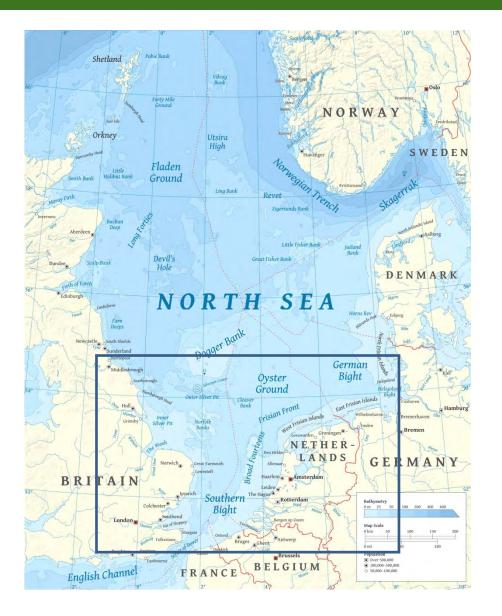


ILVO – Animal Sciences - Fisheries Kris Cooreman

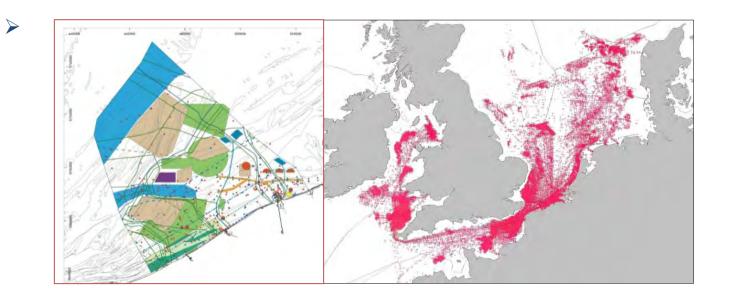
Building expert knowledge for integrated science and advice

14 October 2011


Institute for Agricultural and Fisheries Research

Unit Animal Sciences www.ilvo.vlaanderen.be Policy Domain Agriculture and Fisheries

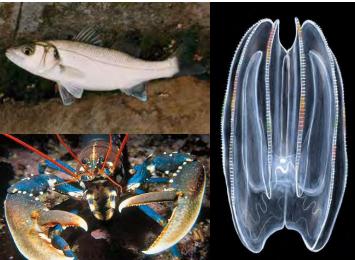
Three research cases from the southern North Sea



ILVO

Introduction

- Spacial planning of extraction, shipping lanes, dredging, cables, pipes, wind mill farms, aquaculture, fisheries etc.
- > Visible forms of human interactions with the marine environment



Introduction

- Less visible or hidden human interactions with the marine environment
- Invasive species climate change ballast water
 - Opportunities e.g. sea bass
 - Threats and deseases:
 - > e.g. M. leidy
 - White Spot Desease
- Microplastics/nanomaterial
- Natural disasters
- Acidification/pollutants
- Often cross-continental problems

Introduction

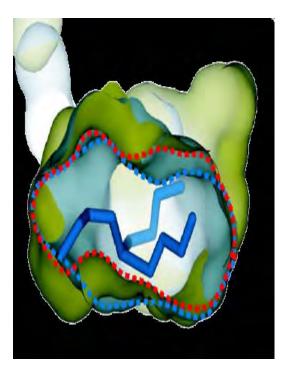
- At least all the human interactions have their specific and/or common and cross-linked, regional and/or cross-continental effects on the marine food chains, living resources, health of the seas,...
- Need for better integrated science and advice to replace the current 'single purpose' policy
- And deterioration of the marine environment is very often a combination of human (and natural) interactions

- Evidence for the effects of the antifoulant TBT on the dogwhelk Nucella lapilus in the early 70s and later
- Causes imposex at 1-2ng/l; death at 5ng/l
- Resulted in world-wide ban

- In 2004 : EU-project: sources, consumer exposure and risks of organotin contamination in seafood – median of 90ng TBT/g edible portion was measured in the crustacean *Crangon crangon*
- Crangon plays an important ecological role in European estuaries and coastal zones
- **Commercially important annual catch in North Sea: 50,000 tons**

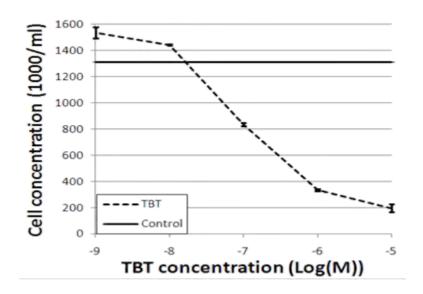
Research started on impairment of growth by TBT

- Focus on the ecdysteroid receptor protein for growth and development complex regulatory system in arthropods
- > The functionality is a heterodimer EcR/RXR ligand complex
 - Highly conservative regulator of growth and molting throughout phylogenetic evolution of arthropods
 - Used for endocrine disruption studies e.g. in
 - research on crop protection (QSAR)
 - imposex in gastropods (Sousa et al., 2010)
 - EcR/RXR activation and growth impairment in crustacea (Wang and Leblanc, 2009; Verhaegen et al. 2010) / etc.



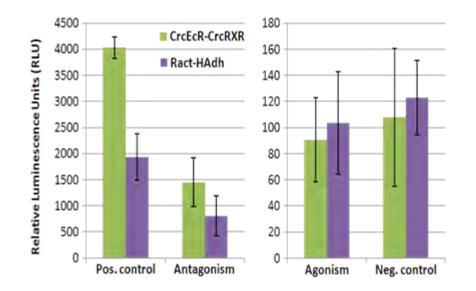
Results: TBT interference in EcR/RXR in shrimp on three levels is documented: physical, functional and gene regulation

Physical: TBT blockage of the RXR ligand binding pocket



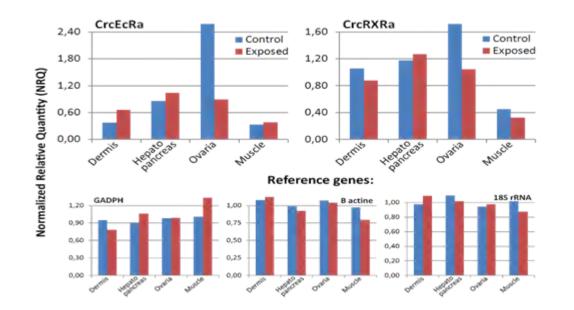
Results: TBT interference in RXR in shrimp on three levels is documented: physical, functional and gene regulation

➢ Functional: cell death at approx. 10⁻7M



Results: documented TBT interference in RXR in shrimp on three levels: physical, functional and gene regulation

Functional: clear antagonistic effect at 10⁻⁸M on EcR/RXR complex – competition between the ecdysteroid hormone PonA (ecdysteroid hormone) and TBT is shown in the figure


ILVO

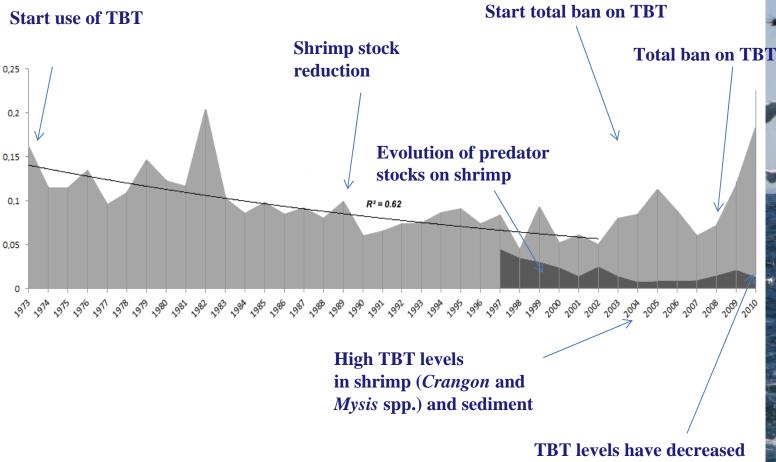
Results: TBT interference in RXR in shrimp on three levels is documented: physical, functional and gene regulation

➤Gene regulation (*in vivo* exposure studies): clear tissue specific effect on EcR expression in ovaries

What to do with the results? questions

- > Are there effects of TBT on *Crangon* in the field?
- > What are the TBT concentrations in the marine environment?
- How do the TBT field concentrations evolve?
- How do the shrimp stocks evolve?
- Is it possible that TBT suppressed the shrimp stocks?
- Or did overfishing reduce the stocks?

What do we know?


- **Low TBT levels impair the growth of** *Crangon*
- The TBT concentrations in the marine environment before and after the total ban on TBT

Long-term stock assessment and recruitment data on shrimp Solution: Integration of all data (involvement of ICES EGS WGBEC/MCWG/WGCRAN)

approx. 10-fold in shrimp and sediment; Crangon

stock went back to the

levels of the 70ties

Conclusions

- > TBT may have had an immense impact on the *Crangon* stock
- It is not an evidence of proof but uncertainties have been eliminated largely
- Likely to be a combination of shrimp fishing, recruitment capacity, predator numbers but maybe with TBT on top
- Advantage: the TBT problem in the food chain is hopefully solved since the ban but we should have had this type of integrated knowledge years earlier
- Drawback: every situation with contaminants is different and should be approached as such – newly emerging contaminants etc.
- Fisheries regulation is useless when the causes are not fisheries related
- This illustrates the need for an ecosystem based approach and integrated science and advice
- Did TBT adversely affect the basis of the food chain (zooplankton)

Thanks to

<u>Yves Verhaegen^{1,2,3}</u>, Ellen Renders¹, Koen Parmentier², Luc Swevers⁴, Pierre Rougé⁵, Wim De Coen³, Kris Cooreman² and Guy Smagghe¹

1 Laboratory of Agrozoology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

2 Institute for Agricultural and Fisheries Research (ILVO), Ankerstraat 1, B-8400 Ostend, Belgium

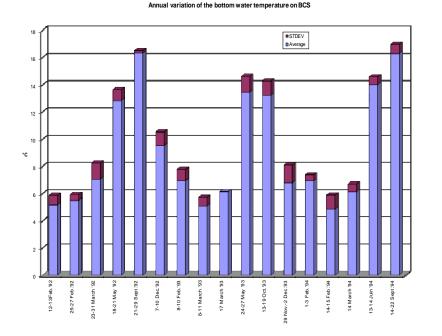
3 Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

4 Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece 5 Surfaces Cellulaires et Signalisation chez les Végétaux, UMR Université Paul

Sabatier CNRS 5546, Castanet Tolosan, France

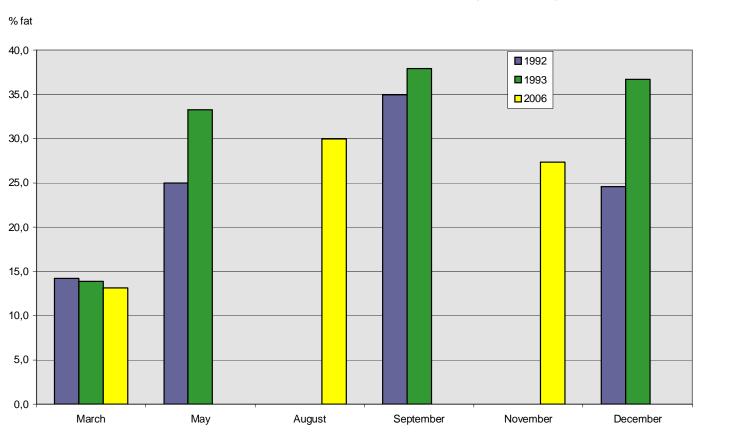
<u>crangon septemspinosa</u>
Fabiola M. Akaishi, PhD.
Environmental Chemist
Environment Canada
Toxicology Laboratory - ALET

- This study is specifically on seasonal distribution of chlorinated POPs in fish
- These POPs (PCBs, dioxins, etc.) accumulate (get burried) in the fat phase
- But fat is being used as energy source in winter and produced and stored in warmer conditions
- How do POPs behave in these conditions of changing fat concentrations?
- Study organism was dab (*Limanda limanda*; flatfish) from the southern North Sea
- Dab stores its fat reserves in its liver



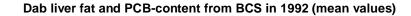
- > This is the temperature profile of the research area
 - Shallow sea thermoclines are very rare

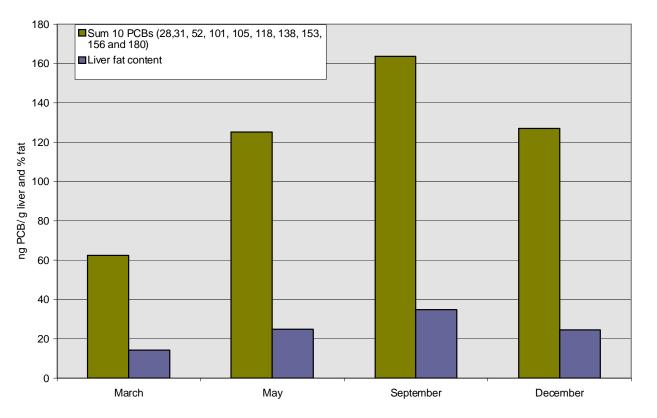
ILVO


Bottom water temperatures of 4-5°C in February/March and approx. 16-17°C in July/September

Fat content in dab liver collected from BCS (mean values)

Significant differences between March and the other sampling months More than 2-fold difference between March and September

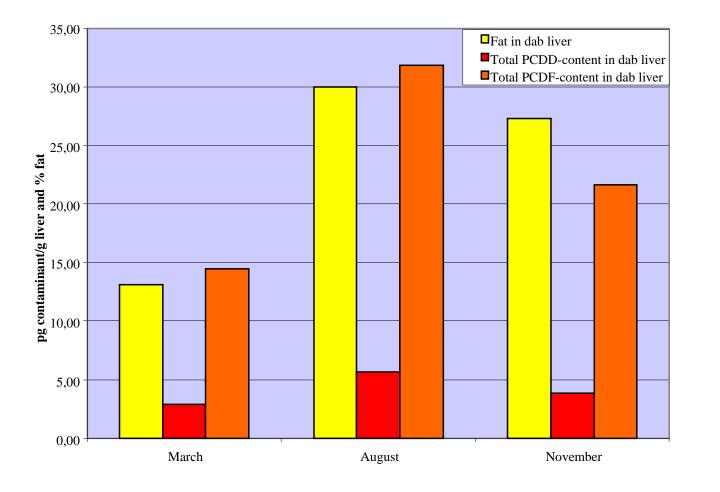



- Fat tissue is produced and stored in 'summer' and the reserves are used in 'winter' (depending on the temperature regime of the sea)
- Big question is: how do POPs behave when the fat is being recirculated?
- > Are POPs diluted during fat production and storage?
- > Are POPs concentrated in the remaining fat tissue?

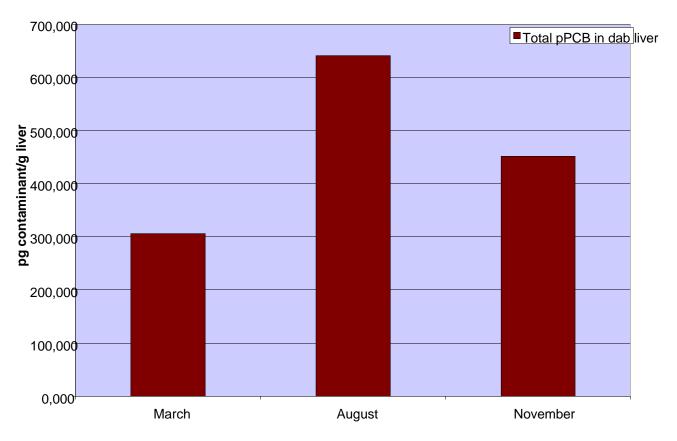
Same results obtained in 1993

Actual purpose of study: examine seasonal variations of biomarkers of pollution In relation to seasonal variations of other parameters such as POPs

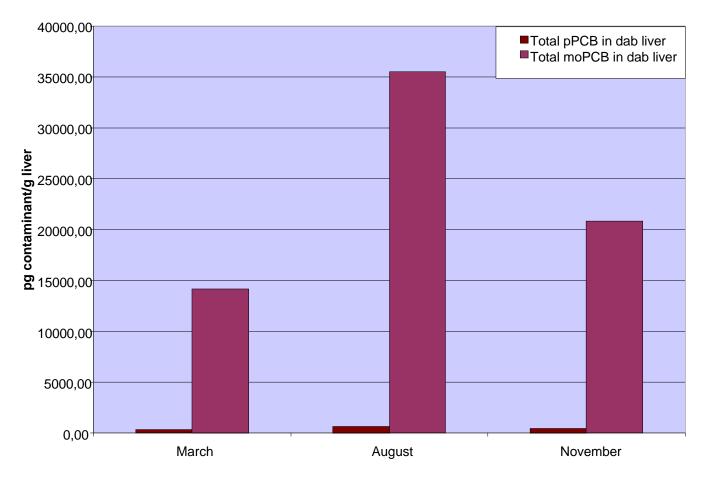
2006: Excercise redone with a larger number of chlorinated dioxin-like POPs


		WHO- TEF
PCDFs	2,3,7,8-TCDF	0.1
	1,2,3,7,8-PeCDF	0.05
	2,3,4,7,8-PeCDF	0.5
	1,2,3,4,7,8-HxCDF	0.1
	1,2,3,6,7,8-HxCDF	0.1
	2,3,4,6,7,8-HxCDF	0.1
	1,2,3,7,8,9-HxCDF	0.1
	1,2,3,4,6,7,8-HpCDF	0.01
	1,2,3,4,7,8,9-HpCDF	0.01
	OCDF	0.0001
PCDDs	2,3,7,8-TCDD	1
	1,2,3,7,8-PeCDD	1
	1,2,3,4,7,8-HxCDD	0.1
	1,2,3,6,7,8-HxCDD	0.1
	1,2,3,7,8,9-HxCDD	0.1
	1,2,3,4,6,7,8-HpCDD	0.01
	OCDD	0.0001
pPCBs	PCB 81	0.0001
	PCB 77	0.0001
	PCB126	0.0001
	PCB 120	0.01
moPCBs	PCB 123	0.0001
	PCB 118	0.0001
	PCB 114	0.0005
	PCB 105	0.0001
	PCB 167	0.00001
	PCB 156	0.0005
	PCB 157	0.0005
	PCB 189	0.0001

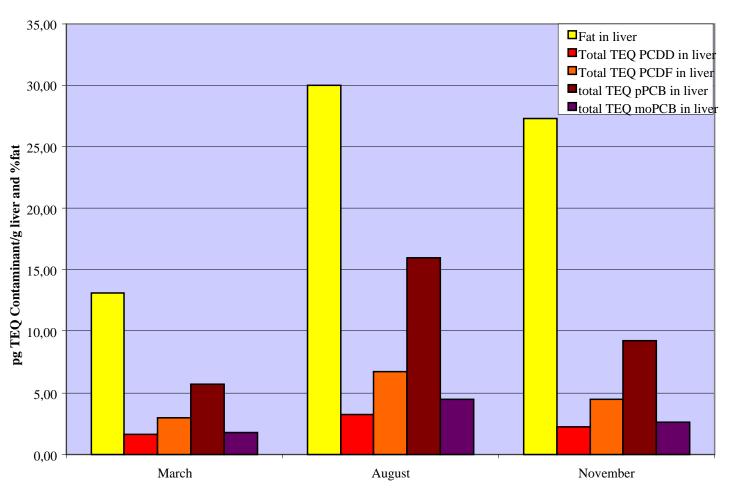
ILVO

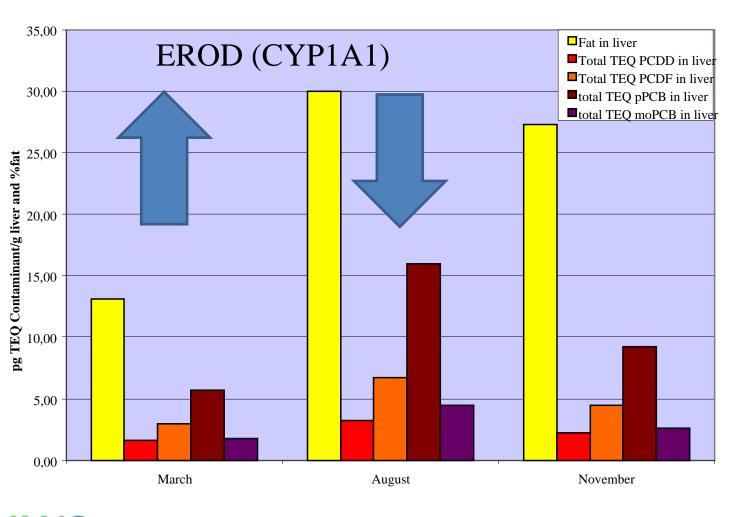

Fat (%), total PCDD and PCDF-content (pg/g liver ww) in dab liver from BCS in 2006

ILVO


Total pPCB-content (pg/g liver ww) in dab liver from BCS in 2006

Total pPCB and moPCB-contents (pg/g liver ww) in dab liver from BCS in 2006




TEQ-values of PCDD, PCDF, pPCB and moPCB in dab liver from BCS in 2006

TEQ-values of PCDD, PCDF, pPCB and moPCB in dab liver from BCS in 2006

ILVO

- The seasonal changes (temperature) have profound impact on liver fat and POP-burden
- Dab 'eliminates' up to 60% of the POPs stored in the liver during winter time. This coincides nicely with the fat metabolism. What is the fate of these chemicals? Where do they go to?
- POPs do not redistribute (concentrate) in the remaining liver fat during winter
- The POP concentrations remain quite constant when normalized to fat
- The POP-fluxes can be quantified as active doses of exposure when sampling periods are narrowed.
- The approach offers possibility to model the mechanistic role of POPs in a kinetic way instead of a steady state model
- > The fluxes identify the most vulnerable periods of the year

- Toxicological importance (based on WHO-TEFs) : pPCBs > PCDFs > PCDDs > moPCBs
- Remarkble: EROD is strongly induced during elimination of POPs and not during accumulation
- The approach could form the basis for a better understanding and assessment of biological effects of POPs (e.g. EROD)

Thanks to

Patrick Roose (ILVO/MUMM), Koen Parmentier (ILVO) and Kris Cooreman

AND THANKS TO YOU TOO

Case 3 – The biomarker Cellular Energy Allocation

Was not presented because of lack of time

