Effect of environmental variation on diets and stable isotope signatures of a piscivorous seabird in a coastal upwelling system

Robert M. Suryan, Amanda J. Gladics

Northern California Current

Coastal Upwelling

Introduction

Objectives

Methods

Results

Marine Food Web

Illustration by Soren Henrich http://www.pncimamatters.ca

Objectives

Introduction

Methods

Results

Emergence of Anoxia in the California Current Large Marine Ecosystem

F. Chan,¹* J. A. Barth,² J. Lubchenco,¹ A. Kirincich,² H. Weeks,³ W. T. Peterson,⁴ B. A. Menge¹

Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current

John A. Barth*[†], Bruce A. Menge[‡], Jane Lubchenco^{†‡}, Francis Chan[‡], John M. Bane[§], Anthony R. Kirincich*, Margaret A. McManus¹¹, Karina J. Nielsen^I, Stephen D. Pierce*, and Libe Washburn**

A new climate regime in northeast pacific ecosystems

William T. Peterson¹ and Franklin B. Schwing²

Planktivorous auklet *Ptychoramphus aleuticus* responses to ocean climate, 2005: Unusual atmospheric blocking?

William J. Sydeman,¹ Russell W. Bradley,¹ Pete Warzybok,¹ Christine L. Abraham,¹ Jaime Jahncke,¹ K. David Hyrenbach,² Vernon Kousky,³ J. Mark Hipfner,⁴ and Mark D. Ohman⁵

Anomalous pelagic nekton abundance, distribution, and apparent recruitment in the northern California Current in 2004 and 2005

Richard D. Brodeur,¹ Stephen Ralston,² Robert L. Emmett,¹ Marc Trudel,³ Toby D. Auth,⁴ and A. Jason Phillips⁴

Conclusions

Introduction Obje

Objectives

Methods

Common Murre (Uria aalge)

Methods

- Chiefly piscivorous
- Dive up to 150 m

Introduction

Produce < 1 chick per year</p>

Objectives

Results

Objectives

Determine whether variation in isotopic signatures of common murres reflect variation in coastal upwelling conditions and summer diet

Decipher mechanisms by which physical forcing and biological production affects upper trophic level consumers

Conclusions

Introduction

Objectives

Methods

Murre Diets: stable isotope analysis 2004-2011

Conclusions

Introduction

Objectives

Methods

Murre Diets: digital photographs 2007-2011

Introduction

Objectives

Methods

Results

Murre diets: digital photographs

Introduction

Objectives

Methods

Results

Murre Chick Diets

Introduction

Objectives

Methods

Results

Prey Gradients

Murre Isotopes

Upwelling Index (45° N) 2004 - 2011

Introduction

Objectives

Methods

Results

Murre Isotopes vs. Upwelling Index

Conclusions

Introduction

Objectives

Methods

Isotopes vs. Upwelling Index

Isotopes vs. Upwelling Index

Conclusions

Introduction

Objectives

Methods

Ecosystem Impacts

RESEARCH ARTICLES

Biological and Chemical Response of the Equatorial Pacific Ocean to the 1997–98 El Niño

F. P. Chavez,^{1*} P. G. Strutton,¹ G. E. Friederich,¹ R. A. Feely,² G. C. Feldman,³ D. G. Foley,⁴ M. J. McPhaden²

Environmental forcing on life history strategies: Evidence for multi-trophic level responses at ocean basin scales

Robert M. Suryan ^{a,*}, Vincent S. Saba^b, Bryan P. Wallace^c, Scott A. Hatch^d, Morten Frederiksen^e, Sarah Wanless^f

Conclusions

Introduction

Objectives

Methods

Prey Species vs. Stable Isotopes

Introduction

Objectives

Methods

Results

Prey Species PCA

Conclusions

Introduction

Objectives

Methods

Prey Species vs. Stable Isotopes

Prey Species vs. Stable Isotopes

Conclusions

Introduction

Objectives

Methods

Stable Isotopes vs. Reproductive Success

 $δ^{15}$ N vs. Repro. Succ: r = -0.256, p = 0.678 $δ^{13}$ C vs. Repro. Succ: r = -0.460, p = 0.436

Introduction

Objectives

Methods

Results

Stable Isotopes vs. Reproductive Success

Introduction

Objectives

Methods

Results

Conclusions

> Variation in upwelling and diet affects the isotopic signature of murre diets during the summer breeding season

> Murre δ^{15} N values can vary by 1 trophic level among years, even though their diet is strictly forage fishes

> δ^{15} N correlated most strongly with physical forcing (upwelling)

> δ^{13} C correlated most strongly with prey species consumed (spatial and source water variability?)

Signals reflecting physical forcing and biological production regimes that propagate through the food web are measurable within a major, upper trophic level consumer on the Central Oregon Coast

Conclusions

Introduction

Objectives

Methods

Thanks.

Joe Ashor (BLM) Timothy Fisher (BLM) Dawn Grafe (FWS) Roy Lowe (FWS) Jay Moeller (BLM)

Funding:

U.S. Fish and Wildlife Service Bureau of Land Management Service First Grant National Science Foundation

Field Crew Yaquina Head:

Cheryl Horton Alexandra Gulick Adrian Lohr Emma Nelson Michelle Schuiteman Amanda Stewart Hannah Waters Alexis Wills