Fishery income fluctuation due to changing vessel speed from the harbor to the fishing ground, in the Japanese squid jigging fishery

"Moving at high vessel speed" causes to

- 1. be able to operate their jigging operation for longer time
- 2. be able to operate their jigging operation at better fishing grounds
- 3. increase the catch of squid
- 4. increase the fuel cost at the moving process

Does it maximize fishery income?

*Osamu Tamaru, Toshihiro Watanabe, Hideo Takahara (NRIFE, FRA), Kazushi Miyashita, Nobuo Kimura, Yasuzumi Fujimori (Hokkaido Univ.) and Teisuke Miura (Hokkaido Industrial Technology Center)

Japanese coastal squid jigging fishery

Many fishermen have been in financial trouble because of rising fuel price and falling fish prices (Baba, 2008)

People make a risky choice when they are in bad situations (Kahneman and Lovallo, 1993)

The Prospect Theory 1

Daniel Kahneman (Winner of the Nobel Prize in Economics)

- people make a choice which they only think that is optimal
- they make an risky choice when they are in bad situations

The Prospect Theory 2

e.g.

Question 2 Blue Red \$ 20,000...

A. Regardless of color, you get 10,000\$

B. Only Blue, you get 20,000 \$

Almost of all who chosed "A" in the question 1, chosed "B"

People don't make a choice as only high expected value

Many Japanese coastal squid jigging fishermen might make a risky choice at their own fisheries management
1. Moving to far fishing ground
2. Using high power fishing lamps
3. Moving at high speed

Introduction – Vessel speed at moving processes

If they lose 1 knot at vessel speed, fuel consumption decrease about 15 %.

High speed

Low speed

Which is better for increasing their economic return? Is economical speed same as ecological speed?

Why use simulation model?

Fishing condition change from hour to hour

Social situation also changes

Surveying real income in all social situations and operating conditions is not feasible

We used the Fishery Income Simulation Model (Tamaru et al., in press)

Purposes of this study -----

To clarify fishery income fluctuation due to changing vessel speed from the harbor to the fishing ground, in the Japanese coastal squid jigging fishery

To clarify economical vessel speed, when fuel price changes

Fishery Income Simulation Model

Setting condition

Catch condition: Very poor (50 cases) Poor (100 cases) Regular (200 cases) Good (350 cases)

We estimated fishery income in each catch condition.

Economical vessel speed in each catch condition

	Catch condition	vessel speed (kt)						
		8	9	10	11	12	13	
Fuel 80 JPY/L (now)	Very poor	39	40	39	36	32	26	
	Poor	128	134	137	138	137	134	
	Regular	260	274	284	290	293	294	
	Good	345	365	379	388	394	398	
	Average	193	203	209	213	214	213	

(Unit: 1,000 JPY)

Bad catch condition

Moving at <u>lower</u> vessel speed cause to increase fishery income.

Good catch condition

Moving at higher vessel speed cause to increase fishery income.

Discussion

1. Do fishermen select economical speed in each fuel price level?

Before the 3rd oil crisis (80 JPY/L)moved at 12 – 13 kt At the 3rd oil crisis (120 JPY/L)decreased to 10 kt After the 3rd oil crisis (80 JPY/L) keep moving at 10 kt

- 2. Fishermen can't predict expected catch of squid before they depart from a harbor.
 - Does estimating the economical vessel speed in each catch condition have meaninglessness?
- 3. Economical vessel speed is the same as ecological vessel speed?
- 4. What should we do for constructing efficient system of coastal squid jigging fishery ?

1. Do fishermen select economical vessel speed?

Decreasing their vessel speed to 10 kt at the 3rd oil crisis is the economical choice

Keeping their vessel speed at 10 kt now is not economical choice

2. Estimating economical speed is meaninglessness?

3. Vessel speed and fuel consumption

If fishermen increase vessel speed from 10 kt to 13 kt, fuel consumption and emission of exhausted CO₂ increase 40%

From the view of sustainable fishery, increasing speed is not better way

By extending the duration of the operation, fishermen might increase their fishery income, and might decrease fuel consumption and emission of exhausted CO_2 gas.

3. Moving at 10kt and extend duration 1 hour

	Catch condition	vessel speed (kt)							
80 JPY/Liter		8	9	10	11	12	13		
	Very poor	39	40	39	36	32	26		
	Poor	128	134	137	138	137	134		
	Regular	260	274	284	290	293	294		
	Good	345	365	379	388	394	398		
	Average	193	203	209	213	214	213		
	Catch condition		vessel speed (kt)						
		8	9	10	11	12	13		
	Very poor	28	27	24	20	14	7		
100 JPY/Liter	Poor	117	121	123	122	119	114		
	Regular	249	261	269	274	275	274		
	Good	334	352	364	372	377	378		
	Average	182	190	195	197	196	193		

1

	Catch condition		vessel speed (kt)						
120 JPY/Liter		8	9	10	11	12	13		
	Very poor	17	15	10	4	-4	-13		
	Poor	106	109	109	106	101	94		
	Regular	238	249	255	258	258	254		
	Good	323	340	350	357	359	358		
	Average	171	178	181	181	179	173		

At almost of all situations, by extending duration of operation 1 hour for moving at 10 kt, fishermen will increase their fishery income.

4. What should we do?

Now, few fishing port have departure time restriction

Fishermen tend to move at high vessel speed

We should to change from departure time restriction to start jigging operation time restriction

Fishermen will increase their fishery income and will decrease fuel consumption and emission of exhausted CO_2 gas.

Summary

To decreasing their vessel speed from 13 kt to 10 kt in the 3rd oil crisis

Economical choice

To keep moving at 10 kt now

Not economical choice

High season for squid jigging fishery (Jun. Jul. Oct. Dec.)

Moving at 12 kt is an economical choice

Low season

Moving at about 10 kt is an economical choice

At almost of all situations, by extending duration of operation for moving at 10 kt, fishermen will increase their fishery income and will decrease fuel consumption and emission of exhausted CO_2 gas.

Departure time restriction is Start jigging operation time restriction

Thank you for your attention

Todarodes pacificus