

Marine debris movement and concentration within the North Pacific Ocean

PICES 2012 Annual Meeting, S12 Hiroshima, Japan

Carey Morishige NOAA Marine Debris Program / IMSG

Evan Howell NOAA Pacific Islands Fisheries Science Center

Overview

Marine debris

- Mechanisms for N. Pacific marine debris concentration, transport, and retention
- Mesoscale features
- Japan tsunami marine debris

Marine Debris

NOAA and the US Coast Guard define marine debris as... "any persistent solid material that is manufactured or processed and directly or indirectly, intentionally or unintentionally, disposed of or abandoned into the marine environment or the Great Lakes."

Impacts include...

- •Eyesore on shores
- •Habitat damage
- •Entanglement
- Ingestion

- Alien species transport
- Navigation hazard
- Human health and safety
- Economic cost

Marine Debris Movement

Characteristics of a debris item will affect how it moves with ocean currents and winds.

Windage = Combination of sail area and drag
Low = slow (e.g., wood)
Medium = moderate (e.g., fishing vessel)
High = fast (e.g., unoccupied inflatable life raft)

Marine Debris Movement & Concentration

- Large and mesoscale climatological Spatial patterns
- Temporal variability (decadal, interannual, seasonal)

Climatological Wind/current patterns

Seasonality to wind fields – these affect surface currents in the North Pacific

Winds and resultant ocean currents transport debris and form large scale convergent areas that collect marine debris

N. Pacific Transition Zone & Subtropical Convergence Zone

- Southern edge of Transition Zone = Subtropical Convergence Zone
 Indicator = Transition Zone Chlorophyll Front
- Concentration of active and passive matter, including marine debris
- Mainly winter and early spring (Donohue et al., 2001; Donohue and Foley, 2007; Pichel et al., 2007; Polovina et al., 2001; Seki et al., 2002)
- Increased deposition of marine debris in the Northwestern Hawaiian Islands during El Nino, when STCZ nears islands (Donohue and Foley, 2007; Morishige et al., 2007)

"Great Pacific Garbage Patch"

- Climatalogical atmospheric high pressure zone; N. Pacific Subtropical High
- Anticyclonic surface currents
- Known area for marine debris concentration
- Anecdotal and scientific data to support
- Much of the debris found here: microplastics and small plastic pieces

Photo of ocean surface within the area of the "garbage patch". *Credit: NOAA Okeanos Explorer*

Western Pacific "Garbage Patch"

- Southeast of the Kuroshio Extension
- Semi-permanent, closed recirculation gyre
- Known area of marine debris concentration (Young et al., 2009; Yamashita and Tanimura, 2007; Day et al., 1990)
- Presumably similar debris type accumulation as in the Eastern GP

Japan Tsunami Marine Debris

- 11 March 2011 tsunami
- NOAA and NASA tracked debris fields until 14 April 2011 – debris dispersed
- Estimated 5 million tons swept into the ocean (Govt. of Japan, 2011)
- ~70% sank nearshore (Govt. of Japan, 2011)
- Numerous agencies working together to address this debris (U.S., Canada, and Japan)
- NOAA: Modeling, sightings tracking, contingency planning

Government of Japan, 3/9/12 press release with estimated amounts: <u>http://www.env.go.jp/press/press.php?serial=14948</u>

Marine Debris Modeling

No models exist yet specifically for marine debris of all shapes and sizes.

NOAA OSCURS (surface current model; Ocean Surface Current Simulator)

- Forecast; historical data; lower windage used
- NWHI-winter 2011/2012; W. coast and AK-2013; MHI-2014

NOAA GNOME (oil spill model; General NOAA Operational Modeling Environment)
Hindcast; 1-5% windage or leeway
Using Navy HyCOM (ocean currents) and NOAA data (wind)

NOAA GNOME Results

Expected Distribution of Computer Simulated Particles Through Wednesday, 09/05/12

- 1,000 particles
- Random windage: low to high
- 8 locations (>3.5m)
- 0700,
 11 March 2011 through
 1 May 2012
- These do NOT represent fields/patches of debris

Area contains 95% of all simulated particles

Area with highest concentration of simulated debris with 1% windage

Reported Sightings to disasterdebris@noaa.gov

Questions

Carey Morishige Pacific Islands regional coordinator NOAA Marine Debris Program / IMSG Carey.Morishige@noaa.gov

Evan Howell Research Oceanographer NOAA Pacific Islands Fisheries Science Ctr. Evan.Howell@noaa.gov

www.MarineDebris.noaa.gov

