At the International Conference Center, Hiroshima, Japan on 16th Oct.

Decadal changes of dissolved inorganic carbon in the Pacific

Akihiko Murata, Shinya Kouketsu, Toshimasa Doi, Kazuhiko Hayashi and Yuichiro Kumamoto

Ocean Climate Change Research Program, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

Course of talking

Background

History of ocean inventory study

Data and method

Data used How to estimate total, anthro. and natural CO₂ changes

Results

Decadal changes of total, anthro. and natural CO₂ Water column inventories

Summary and future studies

History of ocean inventory study

During the late 1980s to the 1990s, WOCE, JGOFS, and national programs, etc. provided baseline data.

About 10 years ago, data-based inventories were obtained.

From 5 years ago, data synthesis activities such as CARINA, PACIFICA, GLODAP, etc. are continuing.

Detecting decadal-scale changes

Anthro. CO₂ in the ocean (mol m⁻²)

Global inventory = 118 \pm 19 PgC for the Anthropocene (1800 - 1994)

Data used

Data obtained by JAMSTEC

R/V Mirai

After 2000, over 50% of the WOCE stations in the Pacific Ocean were re-occupied by JAMSTEC.

Available from CDIAC and CCHDO

Calculation method (1)

 \bullet Total CO₂ changes (ΔC_T)

 $\Delta C_{T} = C_{T}(R) - C_{T}(W),$

where C_T(R) and C_T(W) indicate dissolved inorganic carbon measured in Revisit and WOCE cruises, respectively.

 \diamond Anthro. CO₂ changes (Δ nC_T^{CAL})

 $\Delta nC_T^{CAL} = nC_T^{CAL}(R) - nC_T^{CAL}(W),$

where $nC_T^{CAL}(R)$ and $nC_T^{CAL}(W)$ are the preformed C_T (= $C_T - 0.69 \times AOU$) for Revisit and WOCE cruises, respectively. "n" implies that the values are normalized to a salinity of 35.

Calculation method (2)

 \diamond Natural CO₂ changes (Δ nC_{AOU})

 $\Delta nC_{AOU} = nC_{AOU}(R) - nC_{AOU}(W),$

where $C_{AOU}(R)$ and $C_{AOU}(W)$ are equal to 0.69 × AOU for Revisit and WOCE cruises, respectively. "n" implies that the values are normalized to a salinity of 35.

• Water column inventories of anthro. (ΔnC_T^{CAL}) and natural (ΔnC_{AOU}) CO₂ changes

20° longitudinal or 10° latitudinal interval.

Shortcomings of method used

Hold true on a basin scale For the details, refer to Kouketsu et al. (201?), GBC.

Distributions of ΔC_T , $\Delta n C_T^{CAL}$ and $\Delta n C_{AOU}$ along 3 sections

Total CO₂

Anthro. CO₂

Natural CO₂

AMSTE

Natural CO₂

P14

Specific water column inventories of anthro. CO₂ changes

Specific water column inventories of anthro. CO₂ changes for mode and intermediate waters

Mode water

Intermediate water

MW: $\gamma_n = 25.6-26.5$ and 25.6 -26.8 kg m⁻³ for the North and South Pacific, respectively. IW: $\gamma_n = 26.6-27.6$ and 26.9 -27.6 kg m⁻³ for the North and South Pacific, respectively.

Specific water column inventories of natural CO₂ changes

Decadal storages of anthropogenic and natural CO₂ for latitudinal bands

Area	∆nC _T ^{CAL} PgC decade ⁻¹	∆nC _{AOU} PgC decade ⁻¹
40°N – 65°N	0.3 ± 0.2	-0.1 ± 0.1
$20^{\circ}N - 40^{\circ}N$ $20^{\circ}S - 20^{\circ}N$	1.5 ± 0.2 27 ± 0.4	0.5 ± 0.1 03 ± 03
$50^{\circ}S - 20^{\circ}S$	2.7 ± 0.4 3.9 ± 0.3	-0.1 ± 0.3
50°S – 65°N	8.4±0.5	0.6±0.4

Values show average ± standard error

About 40% of the estimate for the global ocean (2.2 PgC a⁻¹; Fletcher et al. 2006)

Summary

✓ In the Pacific, anthropogenic CO₂ both increased (> 20 µ mol kg⁻¹) and decreased (< -20 µ mol kg⁻¹) on a decadal scale.

✓ Decadal-scale storage of anthropogenic CO_2 north of 40°N was close to ± 0 mol m⁻² a⁻¹.

✓ In the subtropical regions of both hemispheres, an increasing trend of > 10 μ mol kg⁻¹ for oceanic uptake of anthropogenic CO₂ was found, reflecting accumulation in mode waters.

✓ Water column inventories calculated throughout the Pacific Ocean revealed relatively high values (> 0.7 mol m⁻² a⁻¹) in the subtropical regions of both hemispheres and low values in the tropical Pacific.

Summary (cont.)

- ✓ The distribution pattern of water column inventories of anthropogenic CO₂ changes is similar to previous estimates for the Anthropocene, implying that the re-distribution processes of anthropogenic CO₂ have not changed on a basin scale over the last decade.
- ✓ The total anthropogenic and natural CO₂ storage in the Pacific Ocean was estimated at 8.4 ± 0.5 and 0.6 ± 0.4 PgC decade⁻¹, respectively.

Future studies

Global mapping with CARINA, PACIFICA, etc.

Future studies (cont.)

Influences of meso-scale eddies

Future studies (cont.)

Ocean acidification

Thank you for your attention!

