Oct. 16, 2012: PICES Hiroshima

Variability of carbon cycle and biological production in the North Pacific estimated from mapping of CO₂, alkalinity, and dissolved inorganic carbon

Yukihiro Nojiri

CGER, National Institute for Environmental Studies

with Sayaka Yasunaka (CGER/NIES), Shinichiro Nakaoka (CGER/NIES), Tsuneo Ono (FRA), Hitoshi Mukai (CGER/NIES) and Norihisa Usui (MRI)

Funded by MOE (P.I. Y. Nojiri) and MAFF (P.I. T. Ono)

Bottom-up approach in ocean CO₂ sink by pCO₂ mapping

- 3 million observations for 1970-2007
- Climatology (ref. year of 2000)
- grid cell 4° lat x 5° lon

Our goal is to reconstruct pCO₂ map with **higher spatial resolution** and with **inter-annual variability** by Self Organizing Map(**SOM**), a kind of **neural network**.

What is neural network?

The term *neural network* reflects the method's conceptual connection to the functionality of a (human) brain.

- SOM is one kind of Artificial Neural Networks family of statistical analysis tools. This technique was first applied to estimate pCO₂^{sea} field in North Atlantic by Telszewski et al (2009).
- Method <u>neglecting the temporal & spatial sparseness of the pCO₂ data
 </u>
- Method able to provide robust basin-wide estimates of the <u>inter-annual</u> <u>variability (Telszewski et al. 2009)</u>
- Method allowing <u>high resolution</u> output
- Analysis of the North Pacific (10-60°N, 120°E-90°W) pCO₂ for 2002-2008.

 $pCO_2^{sea} = f_{SOM}$ (SST, MLD, CHL, SSS) + α (t-t_{ref})

Procedure of the SOM approach

North Pacific pCO₂ Monitoring by NIES-VOS

- Trans Future 5
- Japan Australia New Zealand
- 6 weeks return voyage
- Data available: Jun.2006 Dec.2010 (submitted to SOCAT v.2)

- Pyxis
- Japan USA (east or west coast)
- 5-8 weeks return voyage
- Data available: Jul.2002 Dec.2010 (submitted to SOCAT v.2)

Achievement of NIES VOS for pCO₂ measurement

NIES pCO₂ measurement is enough intensive to reconstruct North Pacific basin-scale pCO₂ distribution.

Parameters

MGDSST, Office of Marine Prediction, JMA, Japan

- Daily, 0.25° x 0.25° reanalysis
- Fits very well to in situ SST from SOCAT
- SSTs derived from satellite's infrared sensors (AVHRR/NOAA) and microwave sensor (AMSR-E/AQUA), and *in situ* SSTs (buoy & ship) are used in reanalysis.

• GLORYS, Mercator Research Centre, CNRS, France

- Daily, 0.25[°] x 0.25[°] reanalysis
- NEMO ORCA025, 50 levels, ECMWF operational forcing are used as the results of OGCM.
- Data assimilated *in situ* temperature & salinity from Argo, XCTD/CTD, and NCEP real-time global SST.

MOVE/MRI.COM, MRI, Japan

- 10-daily, 0.5[°] x 0.5[°] reanalysis
- System assimilates *in situ* SST & salinity profiles, and SSH anomaly from satellite altimeter into the dynamical model.
- SeaWiFS/MODIS combined product, NASA, USA
- 8-daily, 1/12° x 1/12°
- Coverage improved by filling the empty pixels with 2002-2008 weekly climatology.

Use of Mercator MLD data set

Consideration of secular increasing trend of pCO₂

By changing MLD dataset, the pCO_2 estimate improves its seasonality and the interannual variation especially for the 2002-2005 period.

Results ~ monthly pCO₂ distribution

Winter: high pCO_2^{sea} at high latitudesSummer: low pCO_2^{sea} at high latitudeslow pCO_2^{sea} at mid latitudeshigh pCO_2^{sea} at low latitudes

9

Climatological pCO₂ map ~ Winter & Spring~

Surface pCO₂ mapping with inter-annual variability is used for DIC estimation, with learning data set as SST, SSS, MLD. CHL mapping is not necessary but Si and PO_4 climatology are used for carbonate chemistry calculation. 10

Climatological pCO₂ map ~ Summer & Fall~

Surface pCO₂ mapping with inter-annual variability is used for DIC estimation, with learning data set as SST, SSS, MLD. CHL mapping is not necessary but Si and PO₄ climatology are used for carbonate chemistry calculation. 11

CO₂ flux in the North Pacific

$flux = K \bullet (pCO_2^{sea} - pCO_2^{air})$

Gas transfer coefficient: Sweeney et al. (2007) Wind dataset: CCMP (Cross-Calibrated, Multi-Platform) wind dataset

High-latitude: weak CO₂ source area Mid-latitude: strong CO₂ sink area Low-latitude: weak CO₂ sink or neutral area Surface flux is used for correction in productivity analysis.

Summary and Conclusions for pCO₂ mapping

- 1. Best results obtained by SST, MLD, CHL and SSS as input parameters Root mean square error (RMSE) to NIES measurements; 17.8 μatm
- 2. SOM applicable to the entire basin, no need to divide into several regions SOM applicable for over several years
- 3. Annual mean oceanic CO₂ uptake for 7 yrs; 0.44 PgC/y with relatively small inter-annual variability
- 4. Future expansion to basins of global ocean with SOCAT pCO₂ dataset

Regional SOM parametrizations to be combined into the Global pCO₂ map

Application of pCO₂ mapping to estimate surface DIC

Dissolved Inorganic Carbon (DIC) is a straight forward carbon parameter of biological productivity.

Lee (2001) first applied pCO_2 mapping to net community productivity estimation for global ocean. Takahashi et al. (1997) global climatology was used. Our new precise pCO_2 mapping with inter-annual variability is applicable for production of detailed distribution map of sea surface DIC.

It starts from alkalinity mapping with empirical eq. proposed by Lee et al. (2006).

Comparison of estimated DIC at time series stations

Estimation of DIC, CO2SYS for MatLab (van Heuven et al. 2009) 50N pCO_2 , TA, SST, SSS, PO_4 , Si \rightarrow DIC 30N

RMSEs of DIC for time series stations were 10.2 μ mol/kg.

Monthly sea surface DIC averaged for 2002-2008

North-south and east-west difference in sea surface DIC distribution was well reproduced.

7-year climatology of annual surface DIC distribution

n-DIC (salinity normalized DIC) corresponds SSH (sea surface height) contour. →

Relationship with ocean circulation

Contour: salinity distribution Salinity is one of major controlling parameter for DIC. Difference of DIC and n-DIC is the salinity component of DIC.

Areal difference in annual amplitude of surface DIC

100-150 $\mu mol/kg$ of DIC amplitude was deduced in North-West Pacific region. It well agrees with observation.

Mixed layer integration of Δ DIC in warming months to deduce NCP

Conceptual idea of upper thermocline integration of DIC change in warming months corrected with air-sea exchange, advection and diffusion to deduce net community productivity (NPP) proposed by Lee (2001).

Subtraction of salinity and flux components from upper

thermocline Δ DIC in warming months

Advection component could be related with salinity component.

Salinity and flux (gas exchange) components of Δ DIC (max-min) should be subtracted to estimate the biological signal.

Residual Δ DIC can be compared with satellite PP.

Contour is satellite derived productivity in warming months, converted to the unit in surface DIC change.

Estimating NPP from monthly Δ DIC for upper thermocline

Relatively accurate to integrate for months of developing stratification (4 months from March to July) neglecting diffusion effect.

Deduced NCP from monthly ΔDIC

 $[\mu \text{ mol/kg}]$

NCP (t) = $March - April - May - June - July^{4}$ Area · MLD (t+1) · [nDIC (t) - nDIC (t+1)] 3 + Area · pCO2_flux (t+1) 2

Upper thermocline integration of monthly DIC change. → Net Community Productivity estimation

"pCO₂-Alk-DIC mapping method"

White area is less significant than colored area for the NCP estimation.

4 months integration of DIC change for NCP estimation by **mapping method** is well comparable with satellite NPP.

Ratio suggests distribution of f-ratio. ²²

Inter-annual variation of surface DIC and parameters

Statistic shows various relationships of DIC anomaly with ocean parameters.

Summary and Conclusions for surface DIC mapping

1. Estimation of DIC distribution with high spatial resolution can be done using result of Neural Network pCO_2 mapping. Root mean square error (RMSE) to time series stations were 10.2 μ mol/kg.

2. Reasonable adjustment of salinity component and flux influence to deduce NCP (Net Community Productivity) from upper thermocline integration of DIC change.

3. Signal of inter-annual variability related to PDO has been observed over the North Pacific (2002-2008).

4. Future expansion can be done without surface DIC measurement dataset (rare) but needs global pCO_2 dataset. Hopefully we will have the improved pCO_2 data set from next version of SOCAT.

NIES GHG Monitoring Network by 3D Observation

Acknowledgement: NIES GHG observation, especially by volunteer ships and aircrafts, are supported by many people of commercial companies, port and airport authorities and technical staff.

Ship (Transfuture5)

Aircraft Routes

Hateruma S

