Salmon & jellyfish: bumping elbows in the Northern California Current

Jim Ruzicka¹, Elizabeth Daly¹, Richard Brodeur²

¹Oregon State University ²NOAA Fisheries

Goals:

- Explore effects of variable trophic network structure on production of juvenile salmon in Northern California Current (NCC)
- Develop an end-to-end trophic model to quantify net direct and indirect effects of large jellyfish on juvenile salmon
- Examine relation between local juvenile salmon feeding and jellyfish biomass
- Examine relationship between observed Columbia River salmon production and jellyfish abundance

The sea nettle, Chrysaora fuscescens

NCC Coastal Upwelling Ecosystem: model domain

4/23

<u>Full domain:</u> 42.0 - 48.34°N; 1-183m; 26,000 km² <u>Coverage years:</u> 1999-2011...

Seasons: June – September

Platform: ECOTRAN (Steele & Ruzicka, 2011)

<u>Currency</u>: wet weight (jellyfish normalized to forage fish water content)

"<u>ECOTRAN</u>"

- maps flow of production UP food web
- account for bioenergetic budgets of each group
- propagation of variability & uncertainty (incl. migration)

	NO ₃	NH ₄	P ₁	C ₁	C ₂	F ₁
P ₁	1	1	0	0	0	0
C ₁	0	0	0.5	0	0	0.3
C ₂	0	0	0.2	0.5	0.1	0.3
F_1	0	0	0	0	0.1	0
M0	0	0	0.3	0.2	0.4	0
NH ₄	0	0	0	0.1	0.2	0
feces	0	0	0	0.2	0.2	0.4

Producers→

Sensitivity scenarios Trophic network efficiency metrics

Pelagic survey

zooplankton

Day sampling (Night off CR 1998 - 2011 May, June, September ^{264 Rope Trawl fished at}

Fishing width = 30 m

Nordic trawl 30 x 20m

How important are jellyfish? (in terms of energy flow)

Three juvenile salmon types (abundance time-series & diets)

11/23

Sensitivity Scenario:

-Which functional groups have the strongest effects on juvenile salmon production?

- Estimate juvenile salmon response to a sequential, fixed change across each trophic linkage in the model

-Estimates effect of high jellyfish biomass across functional groups

 Scenario at 1 STD increase over mean biomass (6.2 + 5.8 t/km²)

PRODUCERS → small jelly-herbivore small copepod pelagic shrimp juv. rockfish anchovy

juv. other fish

small phyto invert larva macro-Zoop large phyto micro-Zoop pteropod herring

• ۲ . • . • • • • ۲ ۲ • ۲ • • . ۲ ۲ -. . • • 0 • 0

.

•

•

•

.

0

0

•

0

.

•

micro-Zoop large copepod small copepod invert larva pteropod amphipod pelagic shrimp macro-zoop small jelly-herbivore small jelly-carnivore large jellyfish E. pacifica squid coho yearling planktiv. rockfish hake small benthic fish juv. rockfish juv. other fish

PRODUCERS → re Sensitive to direct increase

inve

0

pter

pela

sma

•

•

in prey availability

herr

Juv.

sma

۲

mac

.

•

small phyto micro-Zoop

.

.

•

•

large phyto

micro-Zoop

0

•

•

.

•

.

۲

large copepod small copepod invert larva pteropod amphipod

pelagic shrimp macro-zoop

small jelly-herbivore small jelly-carnivore large jellyfish E. pacifica

> squid coho yearling planktiv. rocktish

hake small benthic fish

juv. rockfish juv. other fish

Is there a relation between local feeding success and jellyfish biomass?

Index of Feeding Intensity

Sea Nettle Biomass (quantile)

Is there a relationship between observed Columbia River salmon production and jellyfish abundance?

11

Returns by smolt-entry year & life-history

coho yearling

Returns by smolt-entry year & life-history

Fall sub-yearling

21/23

Conclusions:

- Juvenile salmon are sensitive to indirect competition from *Chrysaora fuscescens*
 - Otherwise insensitive to indirect trophic pathways
- Interannual correlation between adult salmon returns and *C. fuscescens* biomass during year when smolts enter the ocean
 - True for all three life-history stages examined
 - Relation to June jellyfish biomass is not robust
- Inverse relation between local jellyfish abundance and feeding incidence of juvenile salmon in September
 - (using <100 m isobath restriction)

1 STD C. fuscescens scenario estimates 18% reduction in salmon production

Thanks

- University of Oregon ACISS cluster
 Tom Conlin
- Birding Crew
 - Jen Zamon & Elizabeth Phillips
- Zooplankton Crew
 - Cheryl Morgan & Jesse Lamb
- Krill Crew
 - Jen Menkel & Tracy Shaw
- Predator Crew
 - Bob Emmett & Andrew Claiborne
- PacFIN & RecFIN fisheries databases
- Diets
 - Elizabeth Daly & Todd Miller
- Funding
 - US GLOBEC Pan-Regional Synthesis & Bonneville Power Administration

Brian Beckman, Joe Fisher, Vlada Gertseva, Cindy Bucher, Paul Bentley, David Teel, Ed Casillas, Bill Peterson

• The captains and crews of the F/V *Frosti* & F/V *Piky*