An individual-based modeling approach for Pacific saury migrations

Seokjin Yoon¹, Terui Takeshi², Michio J. Kishi^{1,2} and Shin-ichi Ito³

¹Faculty of Fisheries Sciences, Hokkaido University, Japan
²Research Institute for Global Change, JAMSTEC, Japan
³Tohoku National Fisheries Research Institute, Fisheries Research Agency, Japan

Today's Contents

Individual-based model Model implementations Artificial westward migration Eddy-capture Conclusions

1 Environmental data

② Bioenergetics model NEMURO.FISH

<u>N</u>orth Pacific <u>E</u>cosystem <u>M</u>odel for <u>U</u>nderstanding <u>R</u>egional <u>O</u>ceanography <u>F</u>or <u>I</u>ncluding <u>S</u>aury and <u>H</u>erring

Ito et al. (2004), Megrey et al. (2007), Mukai et al. (2007)

③ Migration module

Feeding migration

Saury search for local optimal habitats.(1) Optimal temperature for fish(2) Maximum growth for fish

Spawning migration

Spawning migration starts 1 month before the spawning beginning date, depending on knob length (> 25 cm), and the duration is 2 months. (1) Spawning temperature (17 - 25)

- (1) Spawning temperature (17 25 °C)
- (2) Maximum growth for larvae

(4) Lagrangian model $X_{n+1}(x, y) = X_n(x, y) + V_n(x, y) \times dt$ $V_n(x, y) = V_{swimming}(x, y) + V_{advection}(x, y)$

Swimming direction = (Migration module)

Swimming speed = $\begin{cases} 12.3 \times W^{0.33} & \text{, when } T > 12^{\circ}C \\ 2.0 \times W^{0.33} \times \exp(0.149 \times T) & \text{, when } T \le 12^{\circ}C \end{cases}$ (Ito et al, 2004)

Model implementation

- Domain: 105°E 80°W, 15°N 60°N
- Resolution: $526 \times 136 (1/3^{\circ})$
- Run time: 2002.02.01 2004.02.01 (2 years, $\Delta t = 1$ hour)

Initial positions

- Initial date: 2002.02.01
- Put eggs in the area between 130°E and 110°W of 18.5 ≤ T ≤ 20.0 °C based on Iwahashi et al. (2006)
- Total 324 particles

Standard CASE01

- 166 particles not reached to 25 cm-knob length in 1 year (eliminated in figure).
- 34 particles returned at least once to near (within 5 degree of) the initial position during twice spawning migrations.

Standard CASE01

- 166 particles not reached to 25 cm-knob length in 1 year (eliminated in figure).
- 34 particles returned at least once to near (within 5 degree of) the initial position during twice spawning migrations.

Artificial Westward Migration

Artificial Westward Migration

CASE02: CASE01 + Artificial Westward

- 166 particles not reached **Migration** length in 1 year (eliminated in figure).
- 86 particles returned at least once to near (within 5 degree of) the initial position during twice spawning migrations.

CASE01 vs CASE02

Initial position Feeding migration Spawning migration Final position

CASE02: CASE01 + Artificial Westward

- 166 particles not reached **Migration** length in 1 year (eliminated in figure).
- 86 particles returned at least once to near (within 5 degree of) the initial position during twice spawning migrations.

Expanded Search Scope

Adjacent 4 grids \rightarrow 4 grids which are 3 grids far from fish

CASE03: CASE01 + Expanded Search Scope

- 19 particles not reached to 25 cm-knob length in 1 year (eliminated in figure).
- 3 particles went out of the model domain (eliminated in figure).
- 138 particles returned at least once to near (within 5 degree of) the initial position during twice spawning migrations.

CASE01 vs CASE03

Initial position Feeding migration Spawning migration Final position

CASE04: CASE03 + Artificial Westward

- 19 particles not reached to **Migration**ength in 1 year (eliminated in figure).
- 151 particles returned at least once to near (within 5 degree of) the initial position during twice spawning migrations.

Initial positionCASE01 vs CASE02Feeding migrationvs CASE03 vs CASE04Spawning migrationvs CASE03 vs CASE04

Total spawning positions for two years

Ito et al. (2004) & Ito et al. (PICES2010)

Spawning positions on 1st day of each month

Conclusions

- A two-dimensional Individual-Based Model coupled with fish bioenergetics model has been developed to simulate the migration and growth of Pacific saury.
- Fish movements was controlled by feeding and spawning migrations with passive transport by ocean current.
- To release from eddies, we expanded the scope of search for optimal habitats.
- The condition of an artificial westward migration was needed during spawning migration to form spawning ground around Japan.