20 Oct. 2014 PICES

Coastal Ecosystem Complex

High fishery production supported by complex coastal ecosystems Aki Kasai Kyoto University

Field Science Education and Research Center, Kyoto University

MINISTRY OF EDUCATION, CULTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPA

Back ground ~Coastal area

Coastal area:

covers 6% on the earth

produces 38% of ecosystem services

Back ground ~Coastal area

- ➢ 40% of population by the sea
- ➢ Host to industrial activities
 → burden on ecosystems
- A billion people rely on seafood
- 200 million people are involved in Fisheries and associated works.
 - → Clear policies are required to maintain ecosystem functions

Coastal area as a complex system

Ontogenetic habitat shifts in abalone *H. discus hannai*

Settlement - 2 cm SL

Juveniles (2 - 4 cm SL)

Adults (> 4 cm SL)

Temperate seabass Lateorabrax japonicus

Seabass: Increasing biomass

Study field: Tango Bay & Yura River Estuary

Study field: Tango Bay & Yura River Estuary

Tides are small.

- \rightarrow The estuary is stratified.
- Heavy snow in winter
 - \rightarrow Large freshwater discharge in winter.
 - Salt wedge intrudes into the river in summer.
- Spawning and nursery for coastal fishes and benthos

Tango Bay

Early life history of seabass in Tango Bay

Seabass uses different habitats, according to their life stages.

- Spawning ground: offshore, late Dec. - early Feb.
- Larvae: pelagic life and inshore transport, Jan. - early Mar.
- Settling larvae and early juvenile:
 benthic life in coastal shallows,
 Feb. Mar.
- Juvenile: benthic life in coastal shallows and lower reaches of rivers,

Larval distribution (2012)

Yearly changes in larvae and settled juvenils

Recruitment and environment (2007 - 2013)

Recruitment is correlated with river discharge.

Influence of river water on the larval survival

Current fields in Tango Bay

Onshore-ward current at 20 m depth

Wide ADCP observation 8 Jan. 2013

Distribution of seabass juveniles

River ascending mechanism of juveniles

X

- Small Tide \rightarrow Tidal transport
- ➢ Low river discharge in spring
 → Salt wedge intrusion

River ascending mechanism of juveniles

Large salinity changes must be a disadvantage for juveniles \rightarrow Why do juveniles ascend the river?

Isotope ratios of juveniles

Stomach content analyses

Size and importance of prey items

Bimodal nurseries: River and Inshore area

There are more abundant foods in the river than the sea.

Comparison of feeding between the two habitats

residents in the inshore area.

Fulton's Body Condition Index

- Recent migrants show significantly lower K than inshore residents.
 - → Poor conditioned juveniles migrate to the river.
- Differences in K were not significant between inshore residents and long staying juveniles in the river.
 - → Body condition recovered during their stay in the river.

Otolith as a record of individual history

Otolith (lapillus) of seabass at 49

- ➢ Number of rings→ Estimates of age
- Otolith increment width
 → Back-calculation of the body lengths
- ➢ Sr/Ca analysis
 → Estimates of habitat

Growth records in different migration pattern

Worse growth juveniles tend to migrate into river

> Juveniles in the river grow faster than inshore fish after ascending the river

Otolith (sagitta) Sr/Ca showing migration pattern

Sampling points

> Juveniles → Criterion
 ● Seawater
 ● Brackish water

- Freshwater
- \succ Adults $\bigcirc \rightarrow$ Contribution

Otolith Strontium concentration decreases when fish are exposed to freshwater.

- \rightarrow habitats of juveniles
- → Contribution of each nursery area as a nursery

Threshold criterion of Sr/Ca to define the nursery type

Sr/Ca of otolith in the river were significantly low.

River migrants: $< 4.4 \times 10^{-3}$ Inshore residents: $< 4.4 \times 10^{-3}$ (average – SD)

Sr/Ca of adult seabass otolith

Adults Sr/Ca

Distance from nucleus (mm)

- ➢ Individuals with higher Sr/Ca than the criterion
 → Inshore resident group
 ➢ Individuals with lower Sr/Ca than the criterion
 → Pivor migrant group
 - \rightarrow River migrant group

Contribution of rivers for recruitment of seabass

Among 107 adult samples

Freshwater signal: 39

Seawater signal: 68

	River	Inshore
Used as a nursery (%)	36	64
Length of water front (km)	31	153
Contribution/Length (%/km)	1.16	0.42

Rivers would be more valuable as seabass nurseries than inshore areas

Unique life history of seabass

Thank you for your attention.

감사합니다