Ensemble Models of Seabirds Abundance at-Sea

Martin Renner

John Piatt, Gary Drew, Kathy Kuletz, George Hunt, and all contributors to the NPPSD

Goals

Raw data: densities in a 0.3 km × 3 km sample at a certain day and time

Expected means: continuous densities at any given location and specific/average time impossible to know

truth = impractical to know

Goals

+ temporal dimension

"All models are wrong, but some are useful"

George Box

Outline

- Why Ensemble models
- Classification of models
- Compare model performance
 - example species
 - summary of 24 seabird species
- Why not Ensemble models

• Future

Guessing on decisions

- Modeling algorithms, Variable selection
- Linear or curvilinear, error-distribution
- Spatial scale (grid size)
- Degrees of interactions
- Deal with spatial autocorrelations
- Continuous vs. categorical (e.g. season)

Is there a best method we should all use?

Work flow

settings

fit model

examine prediction

optimize settings to reduce artifacts prohibitive for large suite of species

Importance

- Raw data is of limited use
- Population trends
- MPAs, IBA, offshore wind energy, oil spills, hotspots, energy consumption, fisheries, shipping, etc.
- Averaging over a grid is a (simple) model

Ship or aerial surveys

- does not mix well with tracking data
- abundance, not presence/absence

Meet the Candidates

grid-based	classic	data mining	spatial interpolation
GLMM	GLM	MARS	ordinary kriging
	GAM shrinkage	Random Forest	universal kriging

Ensemble: weighted mean of GAM, MARS, RF

Ensemble Model

Ensemble Model

Model Performance

external I0-fold cross-validation

• performance criterion: RMSE

Environmental variables

climatologies

Environmental variables

high

climatologies

distance scaled by colony size

$$C_l = \sum_{i=1}^{i=n} \frac{s_i}{d_{i,l}}$$

bw.

Raw data - Black-legged Kittiwake

Kernel-densities

Kernel-densities

Kernel-densities

biased effort-dependent poor interpolation

count per bin

Black-legged Kittiwake

gam2

ukrige3

randomForest

Black-legged Kittiwake

gam2

ukrige3

randomForest

ukrigeSE3

Renner et al 2013 MEPS

Mean ranks

rank

Mean ranks

rank

Mean REMS

Mean REMS

Ensembles: problems

- Error estimations: computation can be prohibitive
- Have to tune and fit multiple models
- Deal with fitting failures (non-convergence)
- Results dependent on sampling design?
- Return on investment = ?

Optimize for what?

- Prediction Accuracy
- Robustness
- Accuracy / effort

- In many cases, differences were small
- On average: RandomForest best non-spatial predictor, GAM best spatial
- Framework for comparison
- Method to fit question!

Open questions

- Algorithms: ZIP models, boosted trees, soap-film regression
- Spatial grid size
- Alternative cross-validations (by grid/year)
- Effect of survey design

Conclusions

- Use unbiased algorithms
- Extrapolation = Watchout
- Guard against Boundary Effects
- Computing cluster, EC2 web services
- Wise allocation of \$ and time = ?
- Get more samples and good predictors

Models: spatial / non-spatial (habitat)

- Models: spatial / non-spatial (habitat)
- k-fold cross-validation framework

- Models: spatial / non-spatial (habitat)
- k-fold cross-validation framework
- Tested on 24 species

- Models: spatial / non-spatial (habitat)
- k-fold cross-validation framework
- Tested on 24 species
- RandomForests, spatial GAM

- Models: spatial / non-spatial (habitat)
- k-fold cross-validation framework
- Tested on 24 species
- RandomForests, spatial GAM
- Ensembles performed unexpectedly poorly, but are more robust against overfitting

- Models: spatial / non-spatial (habitat)
- k-fold cross-validation framework
- Tested on 24 species
- RandomForests, spatial GAM
- Ensembles performed unexpectedly poorly, but are more robust against overfitting
- There's no free lunch! There's a lot to learn!

Gartner Hype Curve

"All models are wrong, but some are useful"

George Box

"All models are wrong, but some are useful"

George Box

Use best fit for our unique study