MODELING TEMPORAL VARIATION IN KRILL SWARMS: SIZE, INTENSITY, PERSISTENCE AND COHERENCE WITH KRILL PREDATORS

Jarrod A. Santora^{1,2}, Jeffrey Dorman^{1,} and <u>William J. Sydeman¹</u>

¹Farallon Institute, Petaluma, CA 94952 USA; Email: <u>jsantora@ucsc.edu</u> ²University of California at Santa Cruz, Santa Cruz, CA 95060 USA;

Spatial Climatology: Krill "Hotspots" off California, May-June, 2004-2009

Seabird Productivity and Krill Abundance

Santora et al. 2014 Ecological Applications

Blue Whales and Krill Swarms in California

 \bigcirc

Questions

- Can we model the krill prey field important to foraging predators?
 - Yes (Dorman et al. 2011, Dorman et al. in press PiO) coupled ROMS-NPZ-IBM reproduces krill spatial climatology (Santora et al. 2013 GRL, Dorman et al. in review MEPS)
- Can we model the krill prey field at the "swarm" scale, and if so what are the emergent spatial and temporal statistics of modeled krill swarms?
- How do the space/time scales of krill swarms compare to the foraging scales of predator aggregations?

Definitions

- <u>Swarms:</u> forage/prey patches that have potential for elevated trophic transfer, i.e., use by multiple predator species
- Characteristics important to predators:
 - Size (km2; space)
 - Persistence (days; time)
 - *Intensity* (clustering index, z-score; interaction between space and time)
 - as it turns out, these are all positively related...

Roadmap for Talk

- Introduction to
 - Individual-Based Model (Physical and Biological)
- Results
 - 1: latitude of modeled krill swarm formation and dissolution
 - 2: size, persistence, and intensity statistics
 - 3: intersection with UTL foraging scale; variation between central-place foraging and migratory birds.

Physical Oceanographic Modeling Regional Ocean Modeling System

(ROMS)

- Years Modeled 2000 2008 - NCEP-NARR Forcing (32 km) 3-hourly - SODA Boundary Conditions Monthly
- 3-6 km grid resolution

Pt. Conception, CA

Bathymetry of ROMS Domain

ROMS Results vs. Observation Data

Surface Currents (1 mo. avg.) BOON CODAR vs. ROMS

Individual Based Model

- Particle Tracking with Saved ROMS Data (Runge-Kutta Advection -4th order)
 - No Biology, Other than Diel-Vertical Migration
- Downward Vertical Migration of organisms based on light-levels
- Vertical Migration varied (5, 20 meters (chl max), 40m) --- for this talk used 20m as this matched acoustically-derived data best (Dorman et al. in revision MEPS)

Spring Model Runs

m20_02152000_getisord_5Xby7Y_peaks.avi

Analysis – Identified Swarms Using Getis-Ord Statistic

 \bigcirc

• Spatial Statistic (z-score) that highlights clusters of high local values in relation to overall values for the entire area.

Frequency of Swarm Persistence

Swarm formation and dissolution by season & latitude

 \bigcirc

(> 2 days only)

Example of the 2 most persistent swarms observed during spring and summer (top 2% of all modeled swarms)

Changes in their Size, Intensity and distance traveled over time.

Predator aggregations

Visual surveys of seabird abundance/distribution Summer (May-June): Aggregation size (# per 3km)

 \bigcirc

Coherence of Scale in Bird (black) - Swarm (color) Statistics

N

McGowan et al. 2013

Blue Whale foraging tracks (Bailey et al. 2010)

Map Citation: NOAA National Centers for Coastal Ocean Science (NCCOS) 2007. Data Sources: At-sea data from CDAS data set (1980-2003).

Summary and Conclusions

- Can we model the krill prey field at the "swarm" scale?
 - Yes. Provides information on how food is distributed in the environment and changes on a synoptic scale. Very important.
- How does the space/time scales of krill swarm field compare with the foraging scale of UTL predators?
 - Pretty well (persistence and intensity). Not size as much...
 - Model presents various opportunities for understanding and prediction of predator foraging and breeding success.

Changes in Size, Intensity, Depth and Distance from the coast relative to latitude off central CA

Formation and dissolution of hotspots: Changes in their size and intensity, and emergence of seasonal source/sink dynamics

Intensity/Size vs. Persistence

Simulated Swarms: Size vs. Intensity; Intensity vs. Persistence

Scales of swarms during *spring* and *summer*

 \bigcirc

