Phytoplankton production changes driven by physical forcing in the western Arctic Ocean

Mi Sun Yun and Sang Heon Lee*

Department of Oceanography, Pusan National University

Changes in Arctic sea ice cover

- Decreasing trend in summer sea ice cover
- Reductions in sea ice thickness

The largest sea ice loss in the western Arctic Ocean

Arrigo and Dijken (2011)

Arctic Ocean surface warming and freshening

Steele et al. (2008)

Changes in Arctic physical environments

▲ A strong Beaufort Gyre

Nishino et al. 2013

Frequent of occurrence eddies

▲ Accumulation of surface freshwater within the Beaufort Gyre

Impacts of recent environmental changes on the phytoplankton

Arrigo and Dijken, (2011)

Lasternas and Agusti (2010)

Smallest Algae Thrive As the Arctic Ocean Freshens

William K. W. Li,¹* Fiona A. McLaughlin,² Connie Lovejoy,³ Eddy C. Carmack²

s global climate changes, conditions will favor some organisms more than others; there will be ecological winners and losers. In the Arctic, rising air temperature, increasing precipitation, higher river flows, and declining snow cover have lead to large and rapid change in the unreason Scripton unter in the Counda nutrients have decreased (Fig. 1A). Picoplankton, being very small ($<2 \mu$ m diameter), have a large surface-area-to-volume ratio that provides effective acquisition of nutrient solutes and photons, as well as hydrodynamic resistance to sinking. Predictably (6), these cells increased (Fig. 1B) in a regime of hurar nitrate aurolic and greater hydrodynamic

Li et al. (2009)

Exceptional dominance of the colonial form of *Phaeocystis pouchetii*

Research Questions

Given ongoing environmental changes in the Arctic Ocean....

http://www.awi.de/de/forschung/fachbereiche/biowissenschaft en/polare_biologische_ How has primary production of phytoplankton changed driven by physical forcing?

Effects of freshwater inputs

Influence of eddies

Materials and methods

Water samples from different light depths

Materials and methods

In-situ Incubations & analysis

Incubation —

Analysis

Comparison of recent primary production

A comparison of environmental factors in 2009 and 2004

A correlation analysis

	Surface Temperature	Bottom Temperature	Surface Salinity	Bottom Salinity	Surface Density	Bottom Density	Zeu	Zm	SI	SFL	NO ₃	NH4	Chlorophyll a	Carbon Production rate	Nitrate Production rate
Surface															
Temperature Detterm															
Temperature	0.611**														
Surface Salinity	0.735**	0.398													
Bottom Salinity	-0.466*	-0.236	0.000												
Surface Density	0.692**	0.364	0.998**	0.033											
Bottom Density	-0.600**	-0.281	-0.215	0.942**	-0.185										
Zeu	-0.854**	-0.577**	-0.517*	0.684**	-0.479*	0.796**									
Zm	0.223	0.046	0.045	-0.128	0.023	-0.016	-0.075								
SI	-0.826**	-0.535*	-0.894**	0.369	-0.879**	0.480*	0.691**	-0.184							
SFL	-0.248	0.153	-0.648**	-0.028	-0.678**	0.196	0.263	0.378	0.470*						
NO ₃	-0.534*	-0.385	-0.139	0.351	-0.100	0.303	0.622**	-0.324	0.312	-0.179					
NH_4	-0.261	-0.040	0.060	0.566*	0.080	0.566*	0.447	-0.072	0.116	-0.041	0.434				
Chlorophyll a	a 0.304	0.087	0.536*	0.037	0.547*	-0.093	-0.182	0.173	-0.460*	-0.520*	-0.120	-0.243			
Carbon															
Production Rate	0.387	0.244	0.587**	-0.032	0.595**	-0.168	-0.306	0.115	-0.552*	-0.515*	-0.047	-0.107	0.795**		
Nitrate															
Production Rate	0.042	-0.326	0.345	0.203	0.363	0.104	0.170	-0.178	-0.174	-0.449	0.545*	0.541*	-0.091	-0.081	

• Chlorophyll a concentration and primary production were negatively affected by SI (Stratification Index) and SFL (Surface Freshwater Layer)

The utilization of different nitrogen source

- The relative preference index (RPI) : McCarthy et al. (1977) ightarrow
- $RPI_{NO3} > 1 = NO_3^-$ preference, $< 1 = NO_3^-$ rejection, or NH_4^+ preference) •

2004

Phytoplankton biomass

Small size phytoplankton increased!

Exceptionally high regional phytoplankton biomass

Anticyclonic warm-core eddies

The effects of warm-core eddy on the nitrate distribution

Warm-core eddy caused more nitrate upward flux!

The effects of warm-core eddy on the phytoplankton biomass

The effects of warm-core eddy on the phytoplankton production

 Warm-core eddies could lead to a significant increase in new production in the region.

Summary and Conclusions

Given ongoing sea ice decline in the Artic Ocean:

• Effect of the freshwater inputs

- Primary production were considerably reduced
 - Higher freshwater accumulation —> Increased stratification
- Smaller size phytoplankton have increased
- Regional influence of warm-core eddies
 - An important role in the nitrate supply
 - A significant increase in primary/new production in the region.
- Therefore, the effects of physical forcing events (such as freshwater input and eddy) on the primary production need to be more examined to better understand changes of primary production under ongoing environmental changes in the Arctic Ocean.

Thank you for your attention.