Northern Baltic zooplankton, climatic forcing, eutrophication and clupeid stocks in 1979-2006: bottom-up regulation revisited

Northern Baltic zooplankton, climatic forcing, eutrophication and clupeid stocks in 1979-2006: bottom-up regulation revisited

Peculiarities of the Baltic Sea hydrography

and connection to North Sea very restricted

Peculiarities of the Baltic Sea hydrography

and connection to North Sea very restricted

NAO dictates saline influxes through rainfall!

NAO dictates saline influxes through rainfall!

Baltic Sea water is strongly stratified – subhalocline water is only oxygenated through saline influxes!

Major differences in hydrography between sub-areas

-Åland sill separates Gulf of Bothnia from Baltic Proper, restricting deep saline water inflow

-GoB system does not suffer from anoxic deep water!

-Gulf of Finland has no sill to BP, anoxic deep water enters!

Zooplankton time series and hypotheses

- HELCOM COMBINE monitoring program 1979present
- stations sampled once per annum, usually August
- -long-term salinity decrease and eutrophication
- -zooplankton sensitive for salinity changes
- -neritic species decrease, limnic species increase?
- -secondary effects of eutrophication?

Long-term changes, Baltic Proper: salinity, nutrients, chlorophyll-a

Baltic Proper, oxygen content at Gotland Deep, station BY15

saline water influxes: 1977-78, 1993, 2003

Depth (m)

Long-term changes, Gulf of Finland: salinity, nutrients, chlorophyll-*a*

Gulf of Finland, oxygen depletion

Inflow of oxygen depleted saline deep water from the Baltic Proper has caused decrease in bottom oxygen in the Gulf of Finland.

FIMR

Trends in zooplankton by areas

Species	Baltic Proper	Gulf of Finla	and Bothniar	n Sea Bothnian	Bay
Acartia sp.	\rightarrow	\rightarrow	Ы	\rightarrow	
Eurytemora affinis	7	\rightarrow	7	\rightarrow	
Temora longicornis	7	\rightarrow	N N	No cccurrence	
Pseudocalanus acuspes	ы	ы		\rightarrow	
Centropages hamatus	7	7	\rightarrow	7	
Limnocalanus macrurus	7	\rightarrow	7	\rightarrow	
Bosmina coregoni m.	И	Ы	7	\rightarrow	
Podon sp.	\rightarrow	\rightarrow	7	R	
Evadne nordmanni	И	Ы	\rightarrow	\rightarrow	
Daphnia sp.	\rightarrow	\rightarrow	\rightarrow	\rightarrow	
Copepods	\rightarrow	\rightarrow	7	\rightarrow	
Cladocerans	Ы	Ы	7	\rightarrow	
Total	\rightarrow	\rightarrow	7	\rightarrow	
FIMR Mann-Kendall trend test: significant trends, p<0.05					

Loss of neritic copepods – effects on herring growth and stock development?

Loss of neritic copepods – effects on herring growth and stock development?

Loss of neritic copepods – effects on herring growth and stock development?

.. or the same as a cartoon:

Baltic Proper: salinity decreases, anoxic deep water prevails:

Bothnian Sea: salinity decrease, no oxygen problems:

Thank You!