Consequences of extensive aquaculture-structure removal: the relative importance of planktonic versus structurerelated changes

Jennifer E. Purcell, Wen-Tseng Lo, Jia-Jang Hung, Huei-Meei Su, and Pei-Kai Hsu Dept. of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan R.O.C Tapong Bay is a small (4.44 km²), semienclosed, shallow (2.2 m), eutrophic, tropical lagoon in southern Taiwan with nutrients from aquaculture rafts and ponds

The five-year study was from Aug 1999 to Sep 2004 covering removal of oyster culture pens in Jun 2002

Jellyfish disappeared after removal of the aquaculture rafts

After

Before

Life cycle of scyphozoan jellyfish

Aurelia labiata 10 polyps cm⁻²

17 Feb 04

17 Jan 04

13.4 disks polyp⁻¹ est. 4,550 ephyrae

Data analyzed from Tapong Bay

	Stas (No.)	Days before / after removal (No.)
Hydrography (T)	3	11 / 12
(S, pH, DO)	10	9 / 5
Water budget (exchange)	1	9 / 5
Nutrients (P, N, Si, C)	10	9 / 5
Phytoplankton, Chl-a, PP	6	9 / 5
Zooplankton and jellyfish	3	11 / 12

Phytoplankton, Chl a, primary production

Nutrients generally were lower after removal but were not limiting

Nutrients (μM)	Before : After removal	Nutrient ratios	Before : After removal
DSi	20 >10, p<0.05	Si : N	1.2 > 0.9
DIN	16 > 11, p=0.1	Si : P	5.1 < 6.7
DIP	4.0 >1.5, p=0.01	N:P	4.0 > 7.6
DON	24 < 40, p=0.1	Changes occurred towards conditions that may favor jellyfish (eutrophic, but low Si: N and low diatoms : flagellates)	
DOP	2.4 > 1.2, p=0.1		
DOC	162 < 232, p=0.1		

Copepod abundance was 5.6 times greater after removal 4,969 : 27,858 m⁻³

Copepod species	Before : After removal
Oithona oculata	160.7
Paracalanus crassirostris	6.1
Acartia sinjiensis	35.5
Acartia sp.	2.5
Copepod nauplii	2.1
Bestolina amoyensis	125.1

•Fewer competitors (oysters)

•Fewer predators (*Aurelia*)

Food was plentiful for jellyfish

Possible effect of water exchange on *Aurelia*

Water exchange (d)				
	Inner	Outer		
Before	7-24	4-12		
After	5-13	3-7		
Aurelia	0.088	0.035		

Possible effect of light on Aurelia

Removal of culture rafts eliminated shaded surfaces for larval settlement. Increased light in Tapong Bay may have inhibited settlement on other surfaces.

Light at bottom (µ E m ⁻² s ⁻¹)		
Before	197	
After	225	

What caused the jellyfish to disappear?

- Temp.,DO, pH? No change
- Salinity?
- Nutrients?
- Food?
- Light?
- Water exchange?
- Substrate?

- Combination Hi T/ Hi S?
- Decreased, but still high
- More production, more copepods. Better
- Increased. Too much light?
- ?• Increased. Washed out?
 - Mostly removed

World and Asian aquaculture trends 1950-2005 (FAO)

Year

Conclusions

- Extensive aquaculture increased jellyfish population by providing surfaces and shading for jellyfish polyps, and increased retention in Tapong Bay
- Asian marine aquaculture is expanding rapidly, and may provide opportunities for jellyfish populations to increase, especially in semi-enclosed water bodies