Estimations of development and mortality rates of ontogenetically migrating copepods in the SF₆ labeled water-mass during ironenrichment experiments

Atsushi Tsuda¹, Hiroaki Saito² Kazuhiko Hiramatsu¹ and Ryuji Machida¹

¹Ocean Research Institute, University of Tokyo ²Tohoku National Fisheries Research Institute

HNLC Oceans and locations of Iron Enrichment Experiment

SEEDS 2001 SERIES 2002 SEEDSII 2004

IronEx I, II

Chlorophyll-a concentration

Depth (m)

SEEDS II

Change in pCO₂, Phytoplankton (Chl.a), Nutrient (nitrate) concentrations in the patch

— IN — OUT

SEEDS

Tsuda et al (2003)

Temporal variations of size-fractionated chlorophyll-a

Days from fertilization

SEEDS

Tsuda et al (2003)

Chlorophyll concentration in SEEDS, SERIES and SEEDS II

Tsuda et al. (submitted)

Ice-cream truck effect

velocity

Advective

Copepod biomass

Tsuda et al. (submitted)

Average cell size of ciliates

SEEDS II

High grazing period

Days after iron enrichment

Tsuda et al. (in prep)

Cell size Composition of Oligotrich ciliates

SEEDS II

Tsuda et al. (in prep)

Mortality-related topics

1. Estimation of mortality and development rates in the iron-enrichment experiments

2. Young copepodites increase in the diatom-dominated blooms

Iron-enrichment experiment

- Ideal (?) experiment to estimate zooplankton mortality and growth rates
 - Water-mass tracing by SF_6
 - Intensive sampling frequency
 - Suitable time scale of the observation (1 months)

Patch movement on the SSH map SEEDS II

SEEDS

Real-Time Mesoscale Altimetry - Aug 4, 2004

TOPEX/ERS-2 Analysis Jul 27 2001

Variation in Averaged Copepodite stage

SERIES

Tsuda et al. (2006)

Neocalanus plumchrus in SEEDS II

Tsuda et al. (in prep)

Eucalanus bungii in SEEDS II

Tsuda et al. (in prep)

Estimation of Growth and Mortality Rates using a stage-structured model (SSM) • Estimated Parameters

- G: Growth rate
- M: Mortality rate
- Objective function

$$\sum_{s,t} \left(\ln D_{s,t} - \ln \hat{D}_{s,t} \right)^2$$

• where $D_{s,t}$: observed density at stage s and time t $\hat{D}_{s,t}$: predicted density

$$\hat{D}_{s,t} = \hat{D}_{s,t-1} (1 - M) (1 - G) + \hat{D}_{s-1,t-1} (1 - M) G$$

Growth and mortality rates inside and outside the iron-patch by a simple method and the stage structured model

Si	Stage dur mple (day)	ation SSM	Mortality SSM (d ⁻¹)		
N. plumchrus					
In	12.99	6.74	0.000		
Out	10.30	6.65	0.044		
E. bungii C1-C3					
In	8.52	-	-		
Out	11.96	-	-		

Mortality-related topics

1. Estimation of mortality and growth rates in the iron-enrichment experiments

2. Young copepodites increase in the diatom-dominated blooms

Copepod abundance in SEEDS

Suggesting Enhanced reproduction or High survival rate

Fig. Temporal changes of abundance of major zooplankton in and out the iron patch

Tsuda et al. (2005)

Variation in Abundances of copepods

SERIES

400

4000

Days from fertilization

Tsuda et al. (2006)

Temporal variations of gut pigment contents of dominant copepods

Comparison of filtering rates of major copepods during the blooming period (D7-D13) between inside and outside of the patch

	Outside Average (S.D.)	Inside Average (S.D.)	factor		
(ml h ⁻¹ . Ind ⁻¹)					
<i>N. plumchrus</i> C4	3.2 (1.1)	1.8 (0.6)	0.55		
<i>N. cristatus</i> C5	22.1 (15.4)	37.5 (20.9)	1.69		
E. bungii	7.9	2.8	0.35		
C5	(4.7)	(1.4)			
C6f	7.5	4.5	0.60		
	(1.7)	(2.5)			
M. pacifica	7.4	2.8	0.38		
C6f	(4.5)	(0.7)			

Mechanism of C1 increase in the patch

Conclusions

- SF₆ labeling experiment is a good way to examine the growth and mortality rates of zooplankton.
- Development rates estimated in the experiments were relatively high than the reported values, and the mortality rates were very low in the patch.
- Diatom bloom most likely make the mortality rates of egg and nauplius stages low.

Thank you