Classification of Zooplankton Life History Strategies

Dave Mackas¹ and Jackie King²
Fisheries & Oceans Canada

¹Institute of Ocean Sciences & ²Pacific Biological Station

Outline of Talk:

- Motivation for the analysis
- LHS theory historical summary
- Ordination of zooplankton LHS traits
 - Analysis methods
 - Choice of traits
- Results & Interpretations
- Comparison to anomaly time series

Motivation: Understanding "who wins"

Zooplankton communities include many species & strategies. A few are usually dominant, others always rare, others show intense, unpredictable 'outbreaks'

Ave. climatology vs.

Ugly(?) Reality

Historical Background (1)

r vs. K theory (e.g. Pianka 1970, Levins 1968)

- Investment in reproduction, rapid growth & dispersal vs.
 - Investment in survival and ability to compete

(Doesn't not consider age structure within the population, nor constraints imposed by morphology)

Historical Background (2) Demographic Theory

(e.g. Winemiller & Rose, 1992)

Three end-members:

'Opportunist' - quick turnover (≈ r strategy)

'Equilibrium' - high survival rate, especially of juveniles (≈ K strategy)

'Periodic' - fecundity very high, but reached at older age (betting on eventual 'big win')

(Subsequent analyses identify additional LHS classes: 'Salmonid', 'Intermediate')

LHS of Marine Invertebrates

(summary from Ramirez-Llorda 2002)

- Most comparisons have been among benthic taxa
- Tradeoffs of fecundity vs. other parental investment (egg size, brooding,)
- Effects of food availability
- Gradients with increasing latitude and depth (fewer and larger eggs)

Historical Background: What about zooplankton??

Intensive research on individual traits within a few major taxonomic groups

- Egg number and survival for freevs. sac-spawning copepods
- Egg production vs. food availability
- Brooding
- Seasonal dormancy & resting eggs

So far, little inter-group comparison

Our approach:

Multivariate ordination of LHS

(Principal Coordinates Analysis (PCoA) of species-species distance matrix derived from species-traits matrix, King & McFarlane 2003)

to identify:

- Life-history traits that covary across taxa
 - Taxa that share similar strategies

Issues and obstacles encountered:

- Qualitative diversity of zooplankton LHS much greater than for fish
- Within-species plasticity of some traits
 - Information gaps for some life stages (especially survival rate) ⇒ often cannot do LxMx integration

(Nevertheless, <u>can</u> rank/classify taxa on each trait. This is sufficient for PCoA ordination)

Choice of taxa:

23 spp. routinely present & occasionally dominant in northern California Current System

Free-spawning copepods:

Calanus marshallae, C. pacificus, Metridia

Sac-spawning copepods:

Pseudocalanus, Pareuchaeta, Oithona similis

Copepods with resting eggs:

Acartia longiremis, A. tonsa, Centropages

Euphausiids:

Euphausia pacifica, Thysanoessa spinifera

Hyperiid amphipod:

Parathemisto pacifica

Cladoceran:

Evadne

Chaetognaths:

'Sagitta' elegans, Eukrohnia

Shelled Pteropods:

Limacina, Clio

Planktonic tunicates:

Salpa fusiformis (salp)

Dolioletta (doliolid)

Oikopleura (appendicularian)

Ctenophore:

Pleurobrachia

Scyphozoan medusa:

Aurelia aurita

Choice of LHS traits:

'Reproductive':

- Log Fecundity
- •r (per day)
- Lifespan (years)
- •I teroparous vs. Semelparous
- Mode of reproduction:
 - -Separate sexes?
 - -Hermaphroditic?
 - -Parthenogenetic?
 - -Alternating sexual/vegetative?
- •Parental brooding?

'Growth':

- Log Adultsize
- •Somatic growth rate
- Fraction of lifespan in 'adult' body form

'Refuges' (Depth & Dormancy):

- Extent of diel migration
- Ontogenic migration?
- Dormancy
 - -As egg
 - -As adult/late juvenile
- •Lipid storage?
- •Benthic stage?

Ordination Results

PCoA on reproductive traits

First 2 coordinates are significant

	PCo1	PCo2
Percent Variation	42.37	29.05
Eigenvector		
log Fecundity	2.15	3.28
r (per day)	1.83	-0.67
Lifespan (years)	-4.23	1.67
I teroparous/Semelparous	-2.66	-0.39
Mode of reproduction	3.00	-0.05
Parental brooding	-0.09	-3.85

PCoA on reproductive traits

PCoA of reproductive traits

Relatively low r

Long life span

I teroparous

Low fecundity

I teroparous/Semelparous

Some hermaphrodites

Parental brooding

High r & fecundity

Long life span

Semelparous

Reproduction mostly sexual

High *r*, Short-life

Semelparous

Alternating stages

Reproduction mostly vegetative, parental attachment

PCoA on growth traits

■ First 2 coordinates are significant

	PCo1	PCo2
Percent Variation	55.62	44.38
Eigenvector		
log Adult size (dry weight)	-3.99	0.13
Somatic growth (per day)	2.12	3.02
Proportion of life as juvenile/adult	1.86	-3.15

PCoA on growth traits

PCoA of growth traits (least clear & consistent)

Large adult size

Rapid somatic growth

Small adult size

Rapid somatic growth

Direct development

Intermediate size

Low daily growth

PCoA on 'refuge' traits

First 2 coordinates are significant

	PCo1	PCo2
Percent Variation	47.18	35.87
Eigenvector		
Extent of diel migration	0.87	0.61
Ontogenic migration	0.08	-0.46
Dormancy	-0.61	-0.26
Storage of lipids	0.45	-0.46
Benthic stage	-0.79	0.56

PCoA of refuge traits

PCoA on refuge traits

3D views - Lead axis from each PCoA

Big crustaceans: Large diel migration, no dormancy, long-lived. iteroparous, dioecious - e.g. *Euphausia, Thysanoesa, Thermisto*

Comparison with Time Series - Initial expectations:

Sign of response correlated with LHS?

 Some LHS favored during some ocean 'regimes" (response to environmental change similar within a LHS cluster)

Time scale of response correlated with LHS

- Rapid decay of temporal autocorrelation by 'opportunists' (=spikey time series)
- Slow decorrelation by 'equilibrium' and 'periodic' groups (time series contain gradual trends and multiyear fluctuations)

Comparison with Time Series-Results

Interesting, but more complicated than "expectation". Anomaly time series provide examples of:

- Anticorrelation within LHS clusters
- Differences in amplitude & time scale between LHS clusters
- Differences in time scale within LHS clusters

Anticorrelation within LHS clusters

Species
replacement,
driven by shifting
faunal boundaries,
not by LHS
difference

Contrasts of sign & time scale <u>within</u> LHS clusters (2)

Salp time series definitely 'spikey'

Doliolid time series more like the copepods

Gradients of amplitude & time scale <u>between</u> LHS clusters

Trend and 'Regime' responses
within 'cool water'
zoogeographic cluster are
modulated by reproductive and
dormancy strategies

Summary

- PCoA ordination summarized variability among zooplankton life history strategies
- ALL observed strategies persist locally and are represented ~globally
- LHS clusters map strongly onto taxonomy, but with some surprises (e.g. cladocerans similar to doliolids)
- Interannual change (in our region) is dominated by shifting zoogeographic affinity, but modulated by LHS (True elsewhere?)

Future Directions

- Include within-species plasticity of LHS ('point' ⇒ 'range' description of traits)
- Improve our classification & quantification of multi-phase LHS (sexual-asexual, activedormant, planktonic-benthic, direct development vs. metamorphosis)
- Include more taxa
- Compare with other regions