Seasonal changes in food quantity and quality for the development and egg production of the common North Sea copepods *Temora longicornis* and *Pseudocalanus elongatus*

¹⁾Marja Koski, ¹⁾Jörg Dutz and ²⁾Wim Klein Breteler

¹⁾Danish Institute for Fisheries Research, Kavalergården 6, DK-2920 Charlottenlund, Denmark

²⁾Royal Netherlands Institute for Sea Research, P.O.Box 59, NL-1790 Den Burg, The Netherlands

Photos: Wim Klein Breteler; www.nioz.nl

Background and objectives

The control of secondary production in seasonal environments?

Reproduction:

- Temperature and body size?
- Food concentration?
- Food quality?

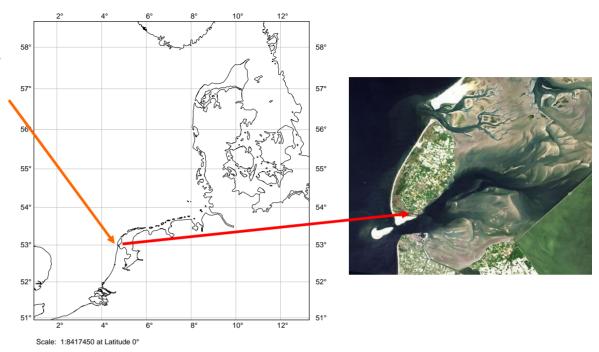
Taxonomic composition? Mineral nutrients?

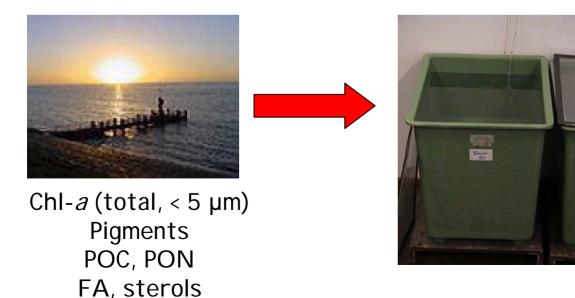
Biochemical composition?

- Maternal factors

Juvenile growth:

- Temperature?
- Food quantity?
- Food quality?
- Maternal effects?

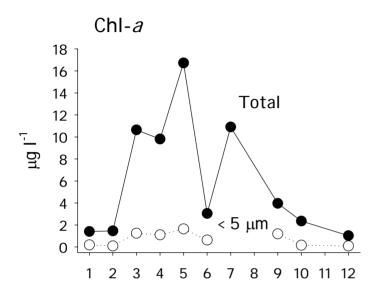



Bioassay approach to study the effect of food <u>only</u> Biochemical measurements (sterols) included Juvenile development over a seasonal cycle

Methods

- Monthly sampling from December to September from a well-mixed tidal inlet, coastal North Sea

- Water transferred to laboratory and fed to <u>cultured</u> copepods at a <u>constant temperature</u> (15 °C)

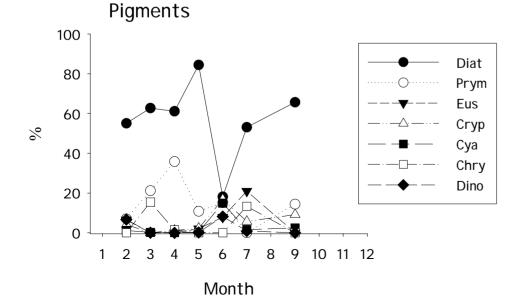


Temora longicornis Pseudocalanus elongatus

Egg production Development (growth) Juvenile mortality

Results

Seasonal development of food quantity and quality: Phytoplankton



- High biomass

- Diatoms dominate (50-

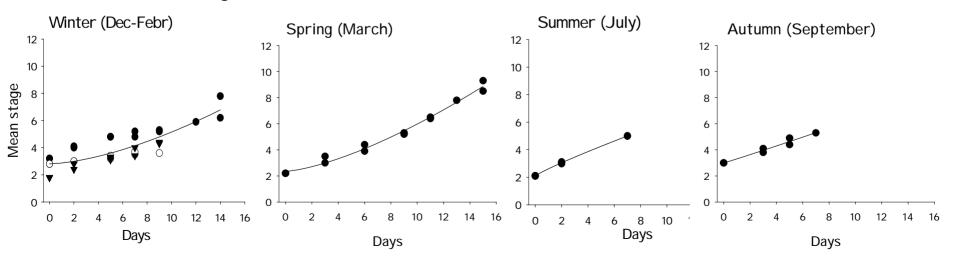
80%), except in June

- Prymnesiophytes in March-May
- Diverse in June


Seasonal development of food quantity and quality: POC, PON, FA; sterols

Month	Minerals (μg t¹)		Ratios (weight)		Biochemistry (μg l²)		
	POC	PON	POC:PON	POC: Chl-a	PUFA	EPA + DHA	Sterols
December	535	78	6.9	520	2.7 (10)	1.2	2.3
January	406	58	7.0	290	-	-	-
February	492	64	7.7	340	0.3 (0.9)	0	3.0
March	971	173	5.6	91	58 (7.4)	25.8	49.6
April	916	169	5.4	93	6.5 (13)	1.0	5.2
Мау	1111	192	5.8	66	13.4 (14)	10.3	7.3
June	-	-	-	-	-	-	-
July	-	-	-	-	-	-	-
September	713	119	6.0	180	0.2 (1.8)	0	1.2
October	1352	188	7.2	580	1.9 (0.7)	1.9	18.5

- High concentration of POC the year round

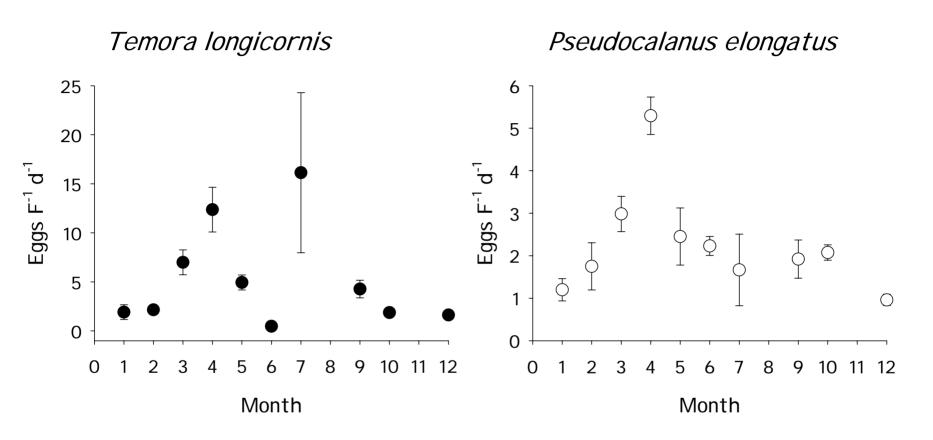

- Lot of detritus during the winter months (POC: Chl-a 300-500)
- High concentration and quality of seston during the spring bloom

Results: Juvenile development

Temora longicornis

Pseudocalanus elongatus

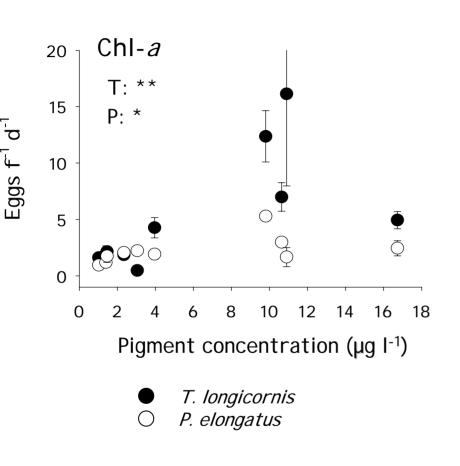
Juvenile growth and mortality


	Growth	(% d ⁻¹)	Mortality (% d-1)		
	T. longicornis	P. elongatus	T. longicornis	P. elongatus	
Winter	8-10	4-11	14-21	11-40	
Spring	17	18	13	16	
Summer	18	17	48	61	
Autumn	9	14	26	47	

- The only time of the year when development could be completed was March (early spring bloom)

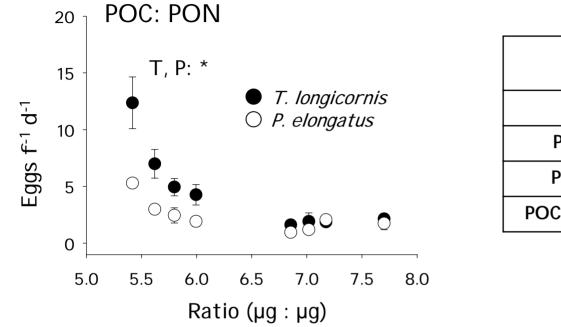
- Equally high growth, but very high mortality in July

- In winter and autumn generally low growth and moderate to high mortality


Results: Egg production

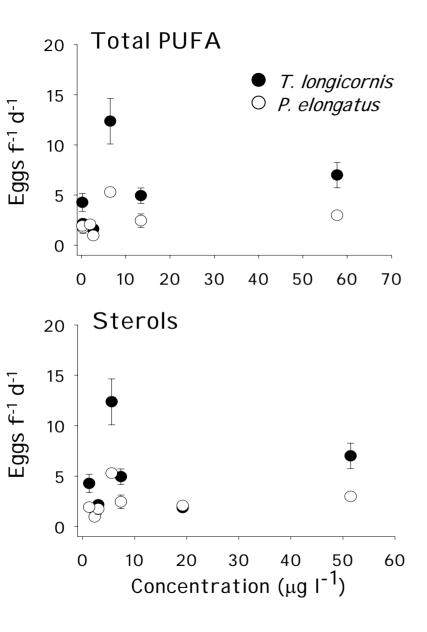
- > 5 fold variation in egg production of both species between months
- Peak in April; for *Temora* also high in July, other months low
- With the exception of July, similar seasonal trends in both species

Effect of food on egg production


Pigments

	Significance of correlation (Spearman rank)		
Algae group	T. longicornis	P. elongatus	
Diatoms (fucoxanthin)	* (< 0.05)	* (< 0.05)	
Prymnesiophytes (Chl Ch2+3)	** (< 0.01)	** (< 0.01)	
Dinoflagellates (peridin)	Ns	** (< 0.01)	
Cyanobacteria (zeaxanthin)	Ns	Ns	
Chlorophytes (Chl <i>-b</i>)	Ns	Ns	
Cryptophytes (alloxanthin)	Ns	Ns	
Chl-a: POC	** (< 0.01)	Ns	

- Egg production connected to phytoplankton biomass, Chl-*a*: POC ratio and concentration of diatoms, prymnesiophytes and dinoflagellates


POC and PON

	Significance of correlation (Spearman rank)		
	T. longicornis	P. elongatus	
POC	Ns	* (< 0.05)	
PON	Ns	* (< 0.05)	
POC: PON	- * (< 0.05)	- * (< 0.05)	

- Egg production *P. elongatus* related to POC and PON, egg production of both species negatively related to POC: PON ratio

Biochemistry

	Significance of correlation (Spearman rank)		
Biochemical compound	T. longicornis	P. elongatus	
Total FA	Ns	Ns	
MUFA + SAFA	Ns	Ns	
Total PUFA	Ns	Ns	
DHA + EPA	Ns	Ns	
Sterols	Ns	Ns	

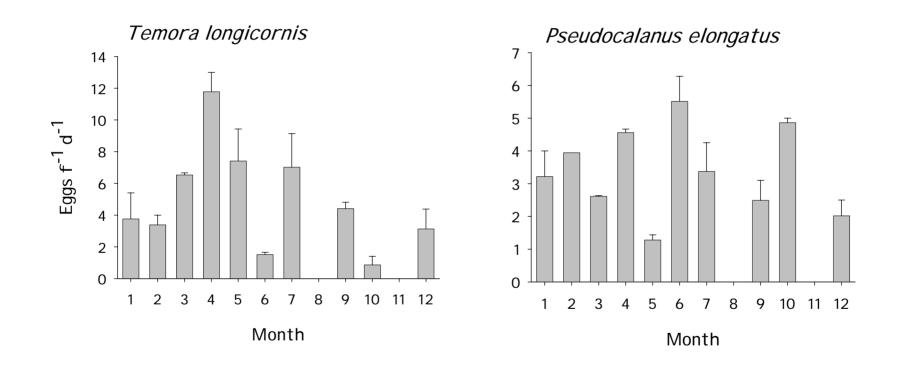
- No connection to any of the measured biochemical parameters

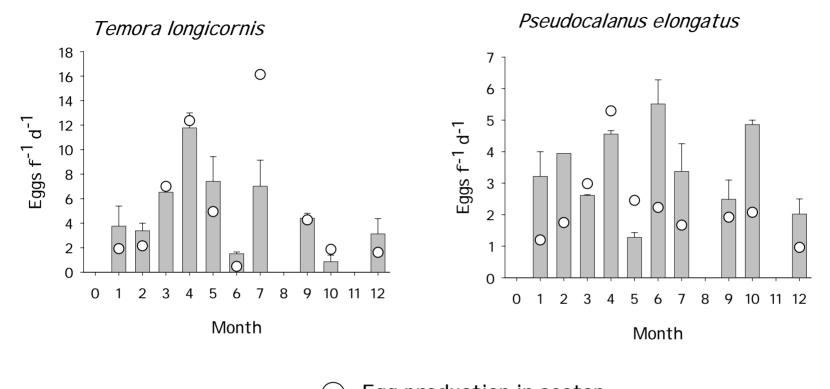
The effect of food on juvenile growth and mortality

-Significant connection between growth and

- * chl-*a*, diatoms, dinoflagellates, prymnesiophytes
- * POC and PON
- * Chl-a: POC ratio

-Significant positive correlation between survival and * PUFA concentration


Conclusions:


Despite potential limitations (ingestion / selective feeding / ciliate concentration / potential changes in food during incubations):

- Up to 5 fold differences in egg production and growth based on <u>food</u> only
- 2) Only spring bloom generation has a potential to develop into adults
- 3) Both egg production and juvenile development seem to follow phytoplankton development: Phytoplankton concentration alone explains most of the annual variation in egg production and growth
- 4) Biochemical components of the food do not seem to be limiting, while nitrogen might be more important
- 5) Diatoms and prymnesiophytes (spring bloom composition) seem to be acceptable food both for egg production and growth

Seasonal rhythm of cultured copepods:

Monthly egg production of cultured copepods fed *Rhodomonas* sp. :

Egg production in seston
Egg production in *Rhodomonas* sp.

- A seasonal rhythm in egg production of standard copepods feeding on a standard diet; resembling the seasonal development of egg production in natural seston

Acknowledgements:

Anna Noordeloos: Pigment analysis Sebastian Rampen: Lipid and sterol analysis Santiago Gonzalez: C:N analysis Nelleke Schogt: Cultures

Carlsberg Foundation ALW-NWO

