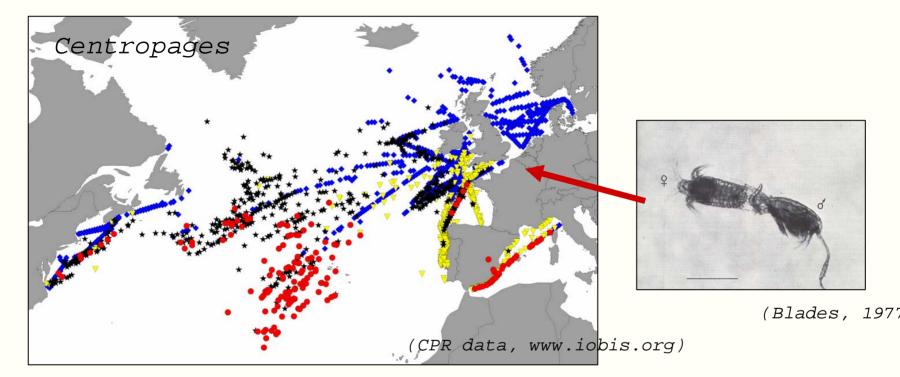
Chasing all kinds: Heterospecific mating and reproductive isolation in planktonic marine copepods

Start N

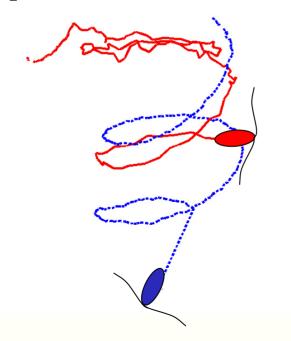


Erica Goetze

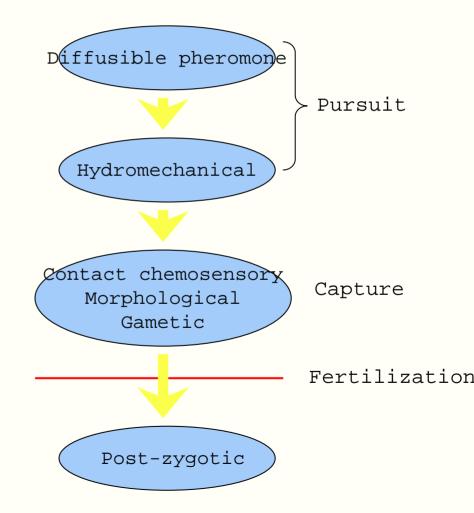
Danish Institute for Fisheries Research, Charlottenlund, Denmark

> 4th International Zooplankton Production Symposium May 30 2007

Mating ecology and reproductive isolation in planktonic copepods

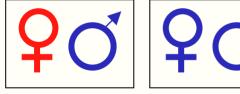

What biological traits serve as reproductive isolating barriers between planktonic species?

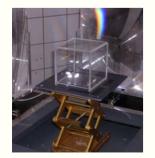
How do these barriers evolve?

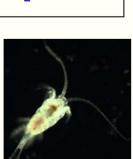

Copepods: How to find the right mate?

Pre-mating isolation: multiple potential sources of information for species recognition

by males


Chronological cue hierarch




Objectives and Approach

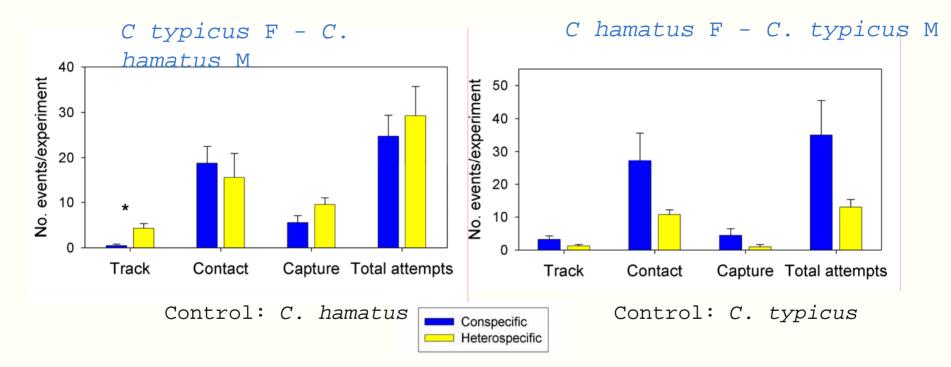
Objectives

- 1. Identify the mating signals that play a role in species recognition.
- 2. Determine the frequency and fate of heterospecific mating.
- 3. Examine the importance of heterospecific mating behavior to the reproductive ecology of natural Paired Mating populations. Experiments Experiments

- Male mate-search volume rates
- Hetero- and conspecific encounter rates in North Sea populations

Centropages, Temora

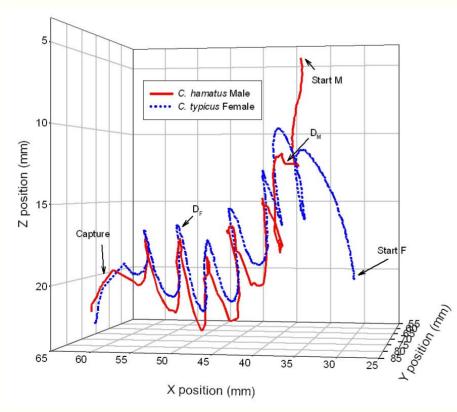
Copepod mating: C. typicus female + C. hamatus male


Incomplete pre-mating isolation for 3 species pairs

Centropages	Trac	Conta	Captu	Sper	
	k	ct	re	m	
typicus F /	Y	Y	Y	Y	
<u> </u>	-	-	-	-	-
	Y	Y	Y	Y	
typicus M					-
Temora					
stylifera F /	Y	Y	Y	Y	
<u>longicornis M</u> longicornis F /			±	Ţ	_
-	Y	Y	Y	N	
<u>stylifera M</u> Centropages -	_				-
<u>Temora</u> typicus F /					-
	Y	Y	N	N	
<u>longicornis M</u> longicornis F /					-
typicus M	?	?	?	?	

Other forms of isolation:

- Reduced frequency of heterospecific mating attempts?
- Gametic (post-mating, prezygotic) or post-


Males frequently pursue the wrong female

- 1. Males attempt heterospecific mating at comparable frequencies to conspecific controls.
- 2. Spermatophore transfers rare.

Mating signals used in species recognition?

Is any species information contained in chemical or hydromechanical cues detectable prior to capture?

Observations:

- Male velocity during pursuit
- Duration of chase
- Trail age at encounter
- Length of pursued trail
- Along track distance at encounter
- Proportion of time trail is lost

Proportion of time
 Hetmapsperifiates 4 events
 (14teaptingsin incorrect
 Conspecifion 27 events
 (10 captures)

No species information in the pheromone signal

No difference in male tracking behavior between hetero- and conspecific mating events

Conspeci	Heterospec	Si	
fic	ific	g?	
10%	23%		Lost trail
35%	32%		Incorrect initial tracking direction
22.4 (13.4 -	25.3 (13.5 - 57.2)	NS	Male velocity during pursuit (mm/sec)
0.8(0.3-9.6)	1.2 (0.2 - 8.6)	NS	Duration of chase (sec)
4.1 (0.2 - 7.6)	3.1 (0.36 - <mark>26.5</mark>)	NS	Trail age at detection (sec)
$ \begin{array}{r} 26.3 \\ (11.7 - \\ \underline{57, 9}) \\ \end{array} $	26.1 (8.7 - <mark>138.8</mark>)	NS	Length of pursued trail (mm)
(4.8 - 41.4)	16.3 (5.6 - <mark>97.8</mark>)	NS Along track distance at detection (mm)	

Heterospecific mating: Important in natural populations?

Is the ocean filled with sexually attractive pheromone trails?

Heterospecific mating: Important in natural populations?

Encounter
$$rate=\beta C_f C_m$$

 β = search volume rate

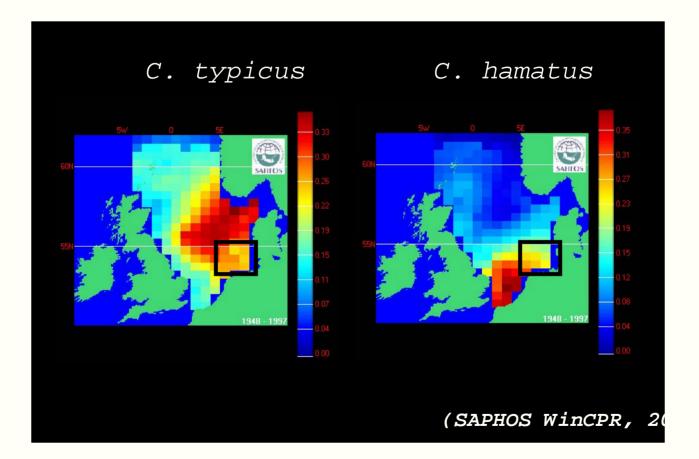
$$\beta_{trail,cruiser} = 2Lu_{2D} \left(\sqrt{\frac{D_P L}{v}} + S \right)$$

Kiørboe and Bagoien, 2005

$$\beta_{typicus} = 168$$

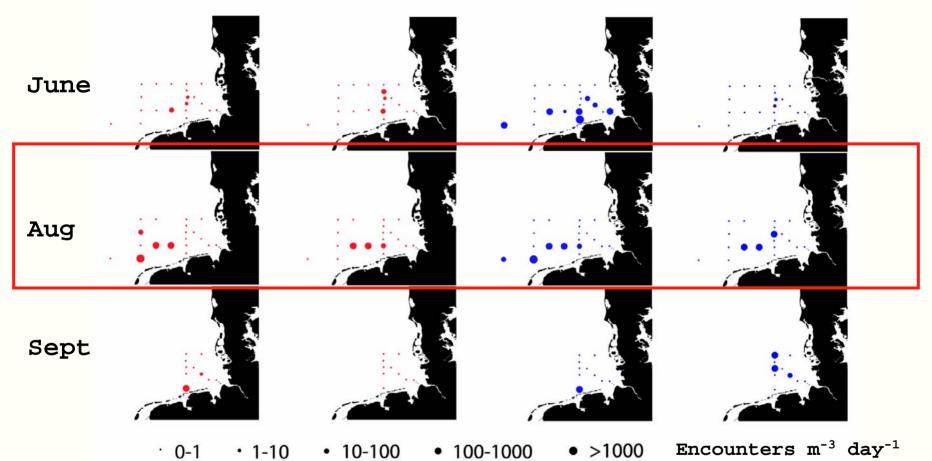
$$\beta_{hamatus} = 24$$

$$\beta_{hamatus M, typicus F} = 96$$

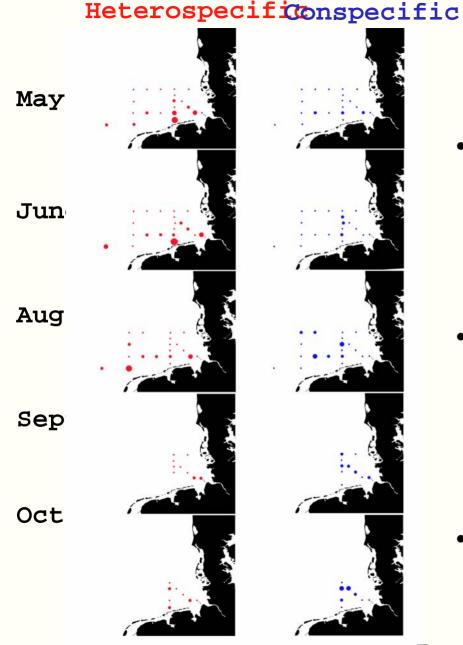

$$\beta_{typicus M, hamatus F} = 43$$

	C. hamatus	C. typicu	
L	4	15*	
u _{2D}	2.48	3.92	
v	5.7	6.5*	
S	0.13	0.15*	

*


from Kiørboe and Bagoien, 2005

Encounter rates in the North Sea



Conspecific

Heterospecific

- Highest heterospecifc encounter rate in August (~2000 enc m⁻³ day⁻¹)
- Same order of magnitude for hetero- and conspecific encounter rates 2004 Abundance data courtesy of GLOBEC Germany, and

Specific encounter rates, *C. typicus* females:

- C. typicus is chemically 'conspicuous' to males of both species, and bears the higher fitness cost of heterospecific mating attempts.
- Often encounters
 heterospecific males at
 higher rates than
 conspecific males (up to
 100+ encounters day ⁻¹).
- Selection for temporal +
 290/atbiandanceodentaiconcoffsy of
 GLOBEC:Germany, and Jürgen Alheit

• 1-10 • 10-25 • 25-50 • > 50 Encounters female ⁻¹ day⁻¹

Broader implications..... so far

- 1. Diffusible pheromone signal highly non-species specific
 - Males may detect and respond to pheromone trails created by a variety of species
- 2. No or nearly no species information contained in pheromone or hydromechanical cues
 - Cues detectable at contact surface proteins, morphological shape - are primary in species recognition
- 3. Heterospecific mating attempts can be a significant fraction of total mating events during part of the reproductive season
 - Higher pheromone producing, faster, rarer species will suffer the greatest burden of heterospecific mating
 - Selection against heterospecific mating attempts: mechanism to create habitat isolation between congeners?

Thanks to:

Thomas Kiørboe Espen Bagøien

With funding from:

Danish Natural Research Council EU Marie Curie Incoming International F

