Effects of hydrodynamic conditions on predation by fish and mating success of *Pseudodiaptomus annandalei* (Copepoda: Calanoida)

Jiang-Shiou Hwang¹, Chien-Huei Lee¹, Shin-Hong Cheng², Hans-Uwe Dahms¹

1. Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan

2. Biotechnology Division, Fisheries Research Institute, Donggang 928, Taiwan Behavioral sequence during a predatorprey interaction (MacKenzie et al., 1994):

... effect of hydrodynamic conditions?

Schematic diagram of the time course of a copepod exposed to periodic hydrodynamical stimuli

from Hwang & Strickler ZOOL STUD 2001, Fig. 1

 Table 1. Particle speeds triggering copepod escape responses during the switch from calm to random flow. The data include 4 replications of the 25-min periods of random flow, and 3 replications each of the 12.5- and 6.25-min periods of random flow

	25-min rando	om flow peri	ods	12.5-min random flow periods			6.25-min random flow periods		
	particle speed triggering escape response (mm/s)			particle speed triggering escape response (mm/s)			particle speed triggering escape response (mm/s)		
0.84	4.15	4.29	0.87	3.99	4.96	5.42	6.89	8.00	10.99

from Hwang & Strickler ZOOL STUD 2001, Tab. 1 Dorsal view of *Centropages hamatus* when generating a feeding current. Note the typical path of entraining particles. Each arrow shows the path line of a particle during a 1-s interval

from Hwang & Strickler ZOOL STUD 2001, Fig. 2

Dorsal view of *Centropages hamatus* subjected to random flow milliseconds before initiating an escape reaction. Each arrow shows the path track of a particle during a 1 second interval

from Hwang & Strickler ZOOL STUD 2001, Fig. 3

Time course of a female *Centropages hamatus* exposed to periodic cycles of non-turbulent and turbulent flow

from Hwang et al. 1994, JPR, Fig. 1

Time course of the cumulative per cent of total escape events occurring during the 25 min duration turbulent cycles

from Hwang et al. 1994, JPR, Fig. 3

OBJECTIVES:

To understand:

- the predatory efficiency as a function of escape ability of the calanoid copepod *Pseudodiaptomus annandalei* from its common fish larval predator
- mating behavior under different hydrodynamic conditions

Swimming speed of copepods (n=30) when fish larvae are isolated by a transparent acrylic plate

Table 1: Swimming speed of *P. annandalei* without fish larvae, larvae present in the environment but isolated by a transparent acrylic plate; and in the presence of fish larvae without isolating plate

Serial No.	Experimental condition	No. of individuals observed	Swimming speed (mm/s) (mean ± SD)
A	Copepods without fish larvae	30	5.6± 1.5
B	Copepods isolated from fish larvae by acrylic plate	30	5.5±1.6
C	Copepods exposed to fish larvae	30	9.0±4.5
Statistical sig	nificance A+B vs C	(one way ANC	OVA; p=0.002**

Particle motion in relation to air bubbling frequency

Predation success under light vs. dark

and calm vs. moderate turbulent conditions

Treatments

Predation by fish on *P. annandalei* at calm water conditions

Escape response of *P. annandalei* at calm water conditions (observation period: 3.83 sec; total distance passed by the copepod: 186.9 mm)

Captured copepod at calm conditions with time (min)

Predation by fish on *P. annandalei* at turbulent conditions

Escape response of *P. annandalei* at turbulent conditions (observation period: 2.86 sec; total distance passed by the copepod: 94.1 mm)

Particle motion in relation to flow

Predation by fish fry on *P. annandalei* at flow conditions (current speed = 600 | hr -1)

Behavioral sequence during a mating interaction (Buskey 1998):

... effect of hydrodynamic conditions?

Swimming trajectory of male *P. annandalei* searching for female at calm water conditions and time course of copepod swimming speed (average swimming speed 13.67 mm/s)

Swimming trajectory of male *P. annandalei* searching for female at moderate turbulent conditions and time course of copepod swimming speed (average swimming speed 12.24 mm/s)

Mating behavior of *P. annandalei* (A)

Close-up of mating behavior of *P. annandalei*

Conclusions

(I) The detection of predators and the subsequent escape response of *P. annandalei* were significantly higher at calm than at turbulent conditions

(II) Fish are able to capture *P. annandalei* only at light conditions and more efficiently at moderately turbulent than at calm conditions

(III) P. annandalei is able to mate successfully at calm or at moderately turbulent conditions – no mating was observed at highly turbulent conditions Thank You!