Effect of salmon-derived nutrients and matters on riparian ecosystems in the Shiretoko World Natural Heritage area

Minagawa M, Kudo H & Kaeriyama M. Graduate School of Fisheries Sciences, Hokkaido University y_koshino516@fish.hokudai.ac.jp

Material cycles in the terrestrial ecosystems

Pacific salmon contributed on the productivity and biodiversity as Ecosystem-Transboundary Materials (ETMs)

- Pacific salmon supply a large amount of nutrients to natal
 spawning ground (e.g. Juday et all. 1932; Donaldson 1967; Johnson & Johnson et al.2003)
- Marine-derived nutrients (MDN) facilitate growth rate and body condition of aquatic organisms
 (Bilby et al. 1998; Wipfli et al.2003)
- Riparian vegetation increase growth rate and biodiversity in salmon spawning area
 (Helfield & Naiman 2001; Bilby et al. 2003)

Disruption of salmon spawning environment

Anthropogenic impacts -

- River channel modification
- Artificial river constructions
- Hatchery programs

Disturbance

Freshwater ecosystemsReproduction of wild salmon

Anthropogenic impacts negatively affect the wild salmon reproduction (Kaeriyama & Edapalina 2004)

Objects

 Pacific salmon play a significant role in the terrestrial ecosystems as biodiversity and productivity in order to transport marine-derived nutrients (MDN) at the spawning period

 As an example of ETMs, we evaluate the MDN contributions for freshwater and riparian ecosystems in the Shiretoko World Natural Heritage area, Japan, using carbon and nitrogen stable isotope analysis

Field sampling

Shiretoko Peninsula (World Natural Heritage Area)

2006-2009 Pre-spawning: July Spawning : September to October

Spawning (Rusha River)

 Three artificial dams for controlling erosion in lower reach

Non-spawning (Akai River)

 Investigation in non-spawning area between the impassible dams

Stable isotope analysis

Samples

Biofilm

Aquatic invertebrates

- Mayfly
- Caddisfly
- Stonefly
- Amphipod
- Chironomid

Salmonids

- Dolly Varden
- Masu salmon
- Pink salmon

Plants

- Willow
- Butterbur
- Bamboo
- Male fern
- Alder

Mammals

- Brown bear
- Yezo sitka deer

δ¹³C or δ¹⁵N (‰) =($R_{\text{sample}}/R_{\text{standard}}$ -1)×1000 $R = {}^{13}C/{}^{12}C \text{ or } {}^{15}N/{}^{14}N$

Feeding history of brown bear **Growth Section Analysis (GSA)**

MDN enrichment = $(\delta X_{se} - \delta X_c)/(\delta X_s + (TL \cdot \delta X_e) - \delta X_c)$

- δX_{se} = the isotope ratios of the organism in areas enriched with salmon
- δΧ = the isotope ratio of the organism in areas without salmon enrichment
- TL = the trophic level
- δΧ = the isotopic ratio of salmon
- δΧ = the isotopic enrichment factor

(Johnston 1997)

Stomach contents analysis

Dolly Varden (Salvelinus malma)

Four categories: 1) Terrestrial invertebrates 2) Aquatic invertebrates

- 3) Salmon eggs
- 4) Sea lice (Lepeophtheirus salmonis)

Discrimination of pink salmon carcasses

Bear-killed carcass

Senescent carcass

The C-N map of freshwater organisms

MDN changed trophic position of organisms in the food-web of freshwater ecosystems

Feeding habits of Dolly Varden in the Shiretoko

Dolly Varden switched preys from invertebrates to salmon eggs in salmon spawning period

Distance of carcass transported by brown bear from the river

Brown bears serve as a vector of salmon carcass in riparian area

Temporal change in number of pink salmon carcasses on the riparian area in 2009

The flooding is one of the main process for carcass transport as well as brown bear

The C-N map of riparian vegetation

(collected within 10m from the river)

higher stable isotope than those of the Akai River

Relationship between $\delta^{15}N$ of willow and the distance from the river

Distance from the river (L, m)

MDN was incorporated within 50 m from the river

Conclusion

MDN contribution to Rusha River terrestrial ecosystems

MDN incorporation in the Rusha River region was negatively affected by anthropogenic impacts despite the World Natural Heritage area

