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Today's contents

Brief history of ecosystem model
(go through Prof. Fei Chali's lecture in the
1st PSS)
NEMURO (a lower trophic level EM)
NEMURO.FISH (a higher trophic level EM)
hands on



Ecosystem
Ecosystem is one component of the earth system.
It Is not static but dynamic.

Difficulties of Earth System Science
Harte (2002)

1. The global scale of human activities and the historically
unprecedented magnitude of human disturbance of the
planet mean that past experience is often not a reliable
guide to predicting the consequences of our actions.

2. The Earth system is rife with feedback, nonlinear

synergies, thresholds, and irreversibilities, that confound

our intuition.

Ecosystem Is dynamically changing.

4. Conducting large scale experiments on this system is
Impossible.
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Ecosystem modeling
Therefore, we need models to test the ecosystem functions

and responses and to understand its structure and
functioning.

Problems

e Always we meet with tradeoff between "'resolution or

coverage in biological components' & "'spatial resolution
or coverage''.

e Computational power is still limited.




Strategy for Ecosystem Modeling

1. Nesting In spatial resolution

2. Rhomboidal approach (deYoung et al., 2004)
Increase resolution of target species.
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Another or similar solution

Fermi approach (simple models)

1. Complex models, which look as inscrutable as nature
Itself, have numerous adjustable parameters and are
generally unfalsifiable. However, it is impossible to
validate the models.

2. Simple models that capture the essence of the problem,
but not all the details, might get us farther (Fermi
approach).

3. This ""Fermi approach' to ESS will only be effective, of
course, If decision makers can be weaned from their awe
of computer-simulated complexity. Harte (2002)

Everything should be as simple as possible, but no simpler.
By Albert Einstein




history of marine ecosystem model

Riley G. A. (1946) ""Factors controlling phytoplankton
population on Georges Bank.", J. Mar. Res., 6, 54-73.
This is the first paper introduced differential equation to
marine ecosystem modeling.
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Memoirs (G. A. Riley, 1984)

H. Bigelow said ""Anybody who thinks he can predict more than 10% of
plankton variability is a damn fool, but good luck"’.

To be sure, | have never pretended that [models] are truly realistic. My
only defense has been that they help us to think....

They frequently yield results that are not intuitively obvious, and they
teach us caution about drawing conclusions that seem to violate
mathematical logic.

That is the way physics and astronomy have grown.

Biological oceanography, messy though it may be, needs the same kind of
disciplined thinking.



milestones of NPZD models
Gorden Riley (1946)
Factors controlling phytoplankton population on Georges Bank.
J. Mar. Res. 6, 54-73
John Steele (1974)
The structure of marine ecosystems
Evans and Parslow (1985)
A model of annual plankton cycles, Biol. Oceanogr., 24, 483-494
Fasham, Ducklow, McKelvie (1990)
A Nitrogen-based model of plankton dynamics in the ocean mixed layer
J. Mar. Res., 48 (3): 591-639
Fasham (1995)
Variations in the seasonal cycle of biological production in sub-arctic
oceans - a model sensitivity analysis.
Deep-Sea Res. Part I: 42 (7): 1111-1149 )

courtesy of Fei Chal




NEMURO

As a science project of PICES, CCCC (Climate Change and Carrying
Capacity) was started in 1993.

Under CCCC, ""Conceptual theoretical modeling studies Task Team"" was
formed. =>MODEL Task Team

To develop a lower trophic ecosystem model which can be applied
commonly to the North Pacific, PICES LTL model workshop was held in
Nemuro in 2000.

The developed model was hames as NEMURO (North Pacific Ecosystem
Model for Understanding Regional Oceanography).
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NEMURO

(North Pacific Ecosystem Model for
Understanding Regional Oceanography)

Nutrient-Phytoplankton-Zooplankton
model

Developed under PICES Model Task
Team since 2000

Coupled with fish bioenergetics models
Published special issue on Ecological
Modelling in 2007

Published 37 papers on peer reviewed
journals

6. Used in more than 8 countries (Canada,
Russia, South Korea, China, USA, Japan,
Mexico, Greek, etc.)




NEMURO
North Pacific Ecosystem Model for Understanding
Regional Oceanography
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Nitrogen equations
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Silicon equations

dPLsi _ GppPLsi — ResPLsi — MorPLsi — ExcPLi — GraPL2ZLsi — GraPL2ZPsi

dt
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e.g. small phytoplankton equation

dPSn
dt

= GppPSn — ResPSn — MorPSn — ExcPSn — GraPS 2Z5n —GraPS2ZLn
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small phytoplankton equagions

C+KMichaelis-
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problems

Limiting factor for Photosynthesis
Multiplier of nutrient concentration, temp. and light.
Another possibility is f(T)*min(f(N), f(L))

Natural mortality

Proportional to square of plankton density
Due to stabilize the system (no theoretical reason)
Insensitive to high frequency variability
(Wainwright et al. 2007)
Since predation pressure from higher trophic already acts
on planktons, it is possible to modify such as D**1.5.
Predation pressure
Critical value is defined to avoid extinction
Many of parameters were borrowed from other models.
PL photosynthesis parameters must be revised.




NEMURO
North Pacific Ecosystem Model for Understanding
Regional Oceanography
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Space/time resolution or coverage

NEMURO family (GR: published, RD:developing)
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Ecosystem resolution or coverage
tradeoff between (finer individual species) & (basin scale model)




CHOPE + eNEMURO
Komatsu et al. (in prep.)
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PE + eNEMURO
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date

1M1 4/1 6/30 9/28 12/27 3/26 6/24 9/22 12/21 3/21 619 917 12/16

High resolution ocean circulation model was assimilated to

satellite altimetry data.
Therefore, physical part

LTL model can capture the variability of phytoplankton well in

this case.

IS close to the true.
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NEMURO.FISH
NEMURO for Including Sa Herring
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Bioenergetics Model for herring and saury

di:[C—(R+S+F+E+P)]- CAL,
W - dt CAL,
/
change of
weight

P:e roduction
C: consumption HP

E: excretion
R: respiration _ :
: F: egestion
(loses through metabolism) )
S: specific dynamic action

(digesting food)



Life History of Pacific Saury with Oceanographic Features
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3-box version

Kuroshio Mixed Water

Oyashio

Ito et al. (2004Db)
Ito et al . (2007)

region
Table 2. Life stages of Pacific saury in the saruy bioenergetics model
Stage region
larvae Kuroshio
juvenile & young mixed region
small Oyashio
adult mixed region 9 life stages
adult matured Kuroshio
adult mixed region
adult Oyashio
adult mixed region

adult matured Kuroshio

Mukai et al. (2007)
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Dynamic linkage between LTL & HTL

CAL,
CAL,

Wz[?—(R+S+F+E+P)]~

NH4

PON

(I dN/dt = - (F+M) N

Population dynamics model

Decrease ZS, ZL, ZP



Effect of Dynamic Linkage
and Predation Pressure

Reduction in large
zooplankton

Slower herring growth
(Megrey et al. 2007a)
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Space/time resolution or coverage
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NEMURO family (GR: published, RD:developing)
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Sardine catch x 104 (tons)
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Provided by: Salvador E. Lluch-Cota
Source: Schwartzlose et al., 1999

Held a workshop in Tokyo in 2005 to
compare sardine & anchovy in California,
Benguera, Funbolt, Oyashio/Kuroshio
Current systems.

Common features:

@ asynchronicity between sardine &
anchovy

@ geographical expansion and reduction of
distribution

We decided model extensions:
€ Two species (sardine & anchovy)
€ Dynamic predator on sardine & anchovy
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Rose et al.(in prep.)



Spawning Stock
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NEMURO & NEMURO.FISH

o TL-HTL coupled model.

*Now Interspecies interaction is included.
*Therefore, it is possible to apply NEMURO.FISH to
ecosystem based management

*However, we must keep the fact in memories that the model
parameters are not enough validated and other factors such
as adaptability may change the parameters.
Models include errors (uncertainty) because of

lack of dynamics,

Insufficient determination of parameters,

Inapposite forcings, etc.
Make model simple as possible as we can.




NEMURO.FISH
Very simple exercises

B~

One box model and one fish.

Physical forcing only includes SST.

Deeper layer temperature is fixed.

If the SST becomes cooler than DL temp, vertical mixing
ratio Is increased by unstable stratification and nutrient is
transported to the surface layer.

Idealized seasonal light intensity is assumed.

Fish has two year life history and the parameters are
similar to Pacific saury.

Fish natural mortality depends on body length.

Annual fishery mortality is assumed to 30%o.
Reproduction depends on the size and food availability of
spawning stock.




light intensity (ly/min)

convection time (1/day)

Ex. 1. Climatological forcing
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Climatological forcing
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EX. 2. decadal forcing

1 degC decadal fluctuation is added to idealized
seasonal forcing.

light intensity (ly/min

1.6E-01
1.4E-01
1.2E-01
1.0E-01
8.0E-02
6.0E-02
4.0E-02
2.0E-02
0.0E+00

2001/1 2003/1 2004/1 2006/1 2008/1 2010/1

— Lint0 — TMP

/1

/1

2/31

2/31

2/30

2/30

30
25
20
15
10

water temp. (degC)



decadal forcing
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Cooler condition increases wet weight of
adult fish because of rich food.



decadal forcing
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EX. 3. Fisheries impact

Fisheries pressure is doubled in 2005 only.

In normal year, the annual fisheries catch is 30% of
adult biomass.

In 2005, the annual fisheries catch iIs increased to
60%.
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Memoirs (G. A. Riley, 1984)

H. Bigelow said ""Anybody who thinks he can predict more
than 10% of plankton variability is a damn fool, but good
luck™'.

To be sure, | have never pretended that [models] are truly
realistic. My only defense has been that they help us to
think....

They frequently yield results that are not intuitively obvious,
and they teach us caution about drawing conclusions that
seem to violate mathematical logic.

That is the way physics and astronomy have grown.
Biological oceanography, messy though it may be, needs the
same kind of disciplined thinking.



