The Oscillating Control Hypothesis
Reassessment in view of New Information
from the Eastern Bering Sea

George L. Hunt, Jr.
School of Aquatic and Fishery Sciences
University of Washington

Lisa Eisner
Ed Farley
Jamal Moss
Jeffrey M. Napp
NOAA Alaska Fisheries Science Center
Where I want to go in this talk

• Walleye Pollock one of USA’s most important Fisheries
• Recently, big drop in pollock biomass in Eastern Bering Sea
• Gap in production of strong year classes
• What fuels production of young pollock?
• Role of Sea Ice
• Long-term consequences
Importance of Walleye Pollock Fisheries

• Number 1 species in USA by weight
 – 2,298.1 million pounds; 28% of US fish catch

• Value $323,212,000

• Dutch Harbor/Unalaska USA
 – Number 1 port for weight (612.7 million lb.)
 – Number 2 port for value ($195 million)

Source: NOAA Fisheries website
Pollock Modeled Biomass

Source: NPFMC 2010 SAFE, Dec 2009
Early Ice Retreat → Late Bloom, Warm Water - Large Copepod Biomass
Late Ice Retreat → Early Bloom, Cold Water - Small Copepod Biomass

February March April May June

Hunt et al. 2002
Distribution of Age-0 Walleye Pollock

log_e transformed catch per unit effort (fish/m3)

Moss et al., 2009 Trans. Amer. Fish. Soc.
Year Class Strength Variable

Source: NPFMC 2010 SAFE, Dec 2009
What were the Assumptions?

- Warm water good for copepod survival and growth
- Euphausiids were always available
- Warm water good for age-0 pollock feeding and growth
- Fast growing age-0 pollock will have a greater survival to age-1
The Reality Check

• The warm years did not lead to big year-classes of pollock

• Baier and Napp 2003 showed that *Calanus marshallae* needed an early bloom in cold water

• Perhaps warm years were good for small copepods but not for the big *C. marshallae* or for euphausiids

• So- some bad assumptions! NEW DATA NEEDED
July Copepod Abundance

Figure Courtesy of J. Napp, NOAA AFSC
Large zooplankton abundance (# per m^3), Bongo Tow, 505 μm mesh net

- **Hyperiids**
- **Neocalanus plumchrus & flemingeri**
- **Calanus marshallae**
Ice, Wind, Bloom and Copepods

Early Ice Retreat → Late Bloom, Warm Water – Mostly Small Copepods

Late Ice Retreat → Early Bloom, Cold Water – Large *Calanus* favored

February March April May June

Modified from Hunt et al. 2002
Diets of Age-0 Pollock

Theragra chalcogramma
Small copepod
Pteropod
Polychaeta
Other zoop
Mysid
Large copepod
Fish
Euphausiid
Decapod
Cnidaria
Chaetognath
Amphipod
Ammodytes hexapterus
Abundance of Age-1 Pollock VS. Age-0 Abundance the prior year

From Moss et al., 2009
Age-0 Pollock Energy Density and Length
BASIS (2004 to 2008)

Slide courtesy of R. Heintz
New Since 2002

- Mueter- Pollock recruitment dome-shaped with respect to temperature
- Moss et al.- Early pollock survival & growth better in warm years; growth weak in cold years
- Baier & Napp- Need early bloom, cool water to have big zoops (*C. marshallae, T. raschii*)
- Moss et al.- Need sufficient energy to survive winter; size & energy density of age-0s critical
- Predation on age-0 pollock greater when large zoops scarce in summer
Conclusions

• Variations in timing of ice retreat affect the availability and size of copepods in spring—warm springs have mostly small copepods, but good early survival of age-0 pollock.

• High numbers of age-0 pollock in summer do not necessarily lead to high numbers of age-1 pollock the next year.

• In warm years, there is a lack of large crustacean zooplankton in summer, age-0 pollock have low energy density, and there is enhanced cannibalism.

• In warm years, summer lack of large zooplankton may result from their failure to recruit in the spring.