Modeling Recruitment Responses of Striped Marlin (Tetrapturus audax) and Swordfish (Xiphias gladius) to Environmental Variability in the North Pacific

Jon Brodziak, Dean Courtney, Kevin Piner, Hui-Hua Lee, and Gerard DiNardo

Pacific Islands Fisheries Science Center
2570 Dole St., Honolulu, HI 96816

Jon.Brodziak@NOAA.GOV
Overview

- Current North Pacific Stock Assessments
 - Striped Marlin
 - Swordfish

- Evidence of Environmental Forcing
 - Early Life History Survival is Important Process
 - Consider Effects of Key Climate Processes:
 - Pacific Decadal Oscillation Index
 - Southern Oscillation Index

- Results and Future Research
 - Are There Significant Effects?
 - How Can We Address Model Uncertainty?
Striped Marlin Growth, Distribution, and Food Habits

- Inhabits surface waters $\geq 20\,^\circ\text{C}$ with 75% of time <10 m depth
- Generalist predator (scombrids, squids,...) with rapid growth
- Highly vulnerable to shallow set longline gear

1. Striped Marlin (LJ)
2. Pacific Sardine (TL)
3. Market Squid (ML)
4. Yellowfin Tuna (FL)
5. Dover Sole (TL)
6. Pacific Cod (TL)

Size at Age

Parameter estimation and state dynamics for integrated assessment models (Stock Synthesis)

State dynamics Model N

Process errors Observation errors

Parameter N_0

Parameter q

$N_{t+1} = N_t - C_t$

$y_t = qN_t$

$-\frac{n}{2} \ln[\sum (y_t - \hat{y}_t)^2]$
Recruitment dynamics modeled using 2 hypotheses

- Moderately Resilient SR Curve, Steepness is $h=0.7$
- Environmentally-Driven Recruitment, Steepness is $h=1$
Alternative Stock Assessment Scenarios:
What is the value of steepness, the fraction of unfished recruitment expected at 20% of unfished biomass?

• Formulate multiple working hypotheses about how alternative causal factors influence recruitment

• Select best hypothesis using model selection criteria or if multiple hypotheses are supported use model averaging

\[R = \frac{4 h R_0 B}{B_0 (1 - h) + B (5 h - 1)} \]
Results: Trends in Spawning Biomass

- Fishery yield (thousand mt):
 - 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
- Spawning biomass (thousand mt):
 - 0, 10, 20, 30, 40, 50, 60, 70
- Catch:
- Moderately Resilient SR Curve
- Environmentally-Driven Recruitment

In the diagram, the trends of fishery yield and spawning biomass are depicted over the years from 1955 to 2000. The catch is represented by a shaded area, while the moderately resilient survival ratio (SR) curve is shown as a solid black line. The environmentally-driven recruitment is indicated by a dotted line.
Measuring Recruitment Success: Accounting for Maternal Effects

North Pacific Striped Marlin Recruits Per Spawner Anomalies
Moderately Resilient Stock-Recruitment Curve Scenario

Predicted R/S
Observed R/S

R/S Anomaly
Western and Central North Pacific Swordfish Relative Stock Status

Spawning Biomass Sub-Area 1

- F (Fishing Mortality)
- $-2\times se$
- $+2\times se$
- S_{MSY}

Spawning Biomass (mt)

Fishing Mortality Sub Area 1

- F
- $-2\times se$
- $+2\times se$
- F_{MSY}
Measuring Swordfish Recruitment Success: Accounting for Maternal Effects

Western and Central North Pacific Swordfish
Recruits Per Spawner Anomalies

- Spawning Biomass (mt)
 - 16000 18000 20000 22000 24000 26000 28000 30000

- Recruits per spawner (R/S in kg)
 - 0.00 0.01 0.02 0.03 0.04 0.05 0.06

- Predicted R/S
- Observed R/S

R/S Anomaly
Indices of Environmental Forcing Effects on Striped Marlin Recruitment Success

Seasonal Indices of Environmental Forcing for Early Life History Stage Survival During Striped Marlin Spawning Season, May to August

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Monthly Southern Oscillation Index (May-Jun)</th>
<th>Average Monthly Pacific Decadal Oscillation (May-Jun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>-30</td>
<td>-3</td>
</tr>
<tr>
<td>1970</td>
<td>-20</td>
<td>-2</td>
</tr>
<tr>
<td>1980</td>
<td>-10</td>
<td>-1</td>
</tr>
<tr>
<td>1990</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>2010</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>
Striped Marlin Moderately Resilient Stock-Recruitment Steepness Scenario
Association Between PDO and Recruits Per Spawner Ratio

Pacific decadal oscillation index (May-Aug)

Log10 transform of striped marlin recruits per spawning biomass

\[\rho = 0.32 \]

P-value = 0.04
Striped Marlin Moderately Resilient Stock-Recruitment Steepness Scenario Association Between PDO and Recruits Per Spawner Anomaly Ratio

Pacific decadal oscillation index (May-Aug)

Log10 transform of striped marlin recruits per spawning biomass anomaly

\[\rho = -0.06 \]

P-value = 0.72
Striped Marlin Environmental Forcing Stock-Recruitment Steepness Scenario
Association Between PDO and Recruits Per Spawner Anomaly Ratio

Pacific decadal oscillation index (May-Aug)

Log10 transform of striped marlin recruits per spawning biomass anomaly

$\rho = 0.11$

P-value = 0.51
Western and Central North Pacific Swordfish
Association of Recruits Per Spawner Anomalies and Southern Oscillation Index

\[(R / S)^{PREDICTED} = 25.589 \cdot 10^{-3} - 5.085 \cdot 10^{-4} \cdot SOI_{Apr-Jul} \]

\[\Delta_{AIC} \approx 10^2 \]
Results and Conclusions

- Limited Evidence for Strong Environmental Effects on Striped Marlin Recruitment Success
- Evidence Exists That the Southern Oscillation Index Influences Swordfish Recruitment Success Was Found
- Striped Marlin Will Likely Be More Vulnerable to Climate Change Than Swordfish Due to More Intensive Fishery Exploitation and Lower Stock-Recruitment Resilience
Future Work

- **How Can Stock Forecasts Include Model Uncertainty for Recruitment Predictions?**
 - Use Fitted Environmental Forcing Functions

- **Use Fitted Stock-Recruitment Curves**
 - Resample Fitted Error Distributions
 - Resample Empirical CDF of Residuals

- **Use Empirical Cumulative Distribution Functions**
 - Recruitment
 - Recruits Per Spawner
 - Recruits Per Spawner Anomalies

- **Apply Model Averaging When Several Scenarios are Supported by the Data**
Thank You Very Much