Modeling Impacts of Mesoscale Eddies on Biogeochemical Processes in South China Sea and Gulf of Alaska

Prof. Fei CHAI (柴扉)
University of Maine

- Eddies and biological responses in the SCS
- Eddy transporting iron in Gulf of Alaska
- Iron fertilization with a Haida eddy - August 2012
Regional Ocean Model System (ROMS) 1/8 deg. (~12km) (1991 to 2013)

Carbon, Silicate, Nitrogen Ecosystem Model (CoSiNE)
(Chai et al., 2002, 2003, 2007, 2009; Fujii and Chai, 2007; Liu and Chai, 2009; Xiu and Chai, 2011, 2014; Palacz et al., 2011; Guo, Chai et al., 2014)
Okubo-Weiss parameter

\[W = s_n^2 + s_s^2 - \omega^2 \]

\[s_n = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}, \quad s_s = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}, \quad \omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \]

1st guess: \(W < -0.2 \sigma_W \)

Geometric center

Mean SLA and distances to the center

Search the area limited by the maximum distance for points where SLA greater/less than the mean SLA

Only those eddies with life span > 30 days, radius > 45 km, water depth > 1000m
Eddies in the South China Sea

Numbers: 27-38/yr (33); Area: 10% of the total area

Xiu, Chai et al., JGR, 2010
Impact of Cyclonic and Anti-Cyclonic on N, P, Z

Xiu and Chai, JGR, 2011
Annual Mean Integrated New Production in the SCS, 1993-2007

- Cyclonoic (1.8)
- Anti-Cyclonoic (0.9)
- Mean (1.4)
Modeling Impacts of Mesoscale Eddies on Biogeochemical Processes in South China Sea and Gulf of Alaska

Prof. Fei CHAI (柴扉)
University of Maine

- Eddies and biological responses in the SCS
- Eddy transporting iron in Gulf of Alaska
- Iron fertilization with a Haida eddy - August 2012
Modeled Eddies Occurrence

Red Area: 15-20%

Satellite Derived Eddies Occurrence

Xiu, Chai et al., DSR, 2012
A total of 26 westward moving Haida eddies (16 years), 280 days averaged life span

Xiu, Palacz, Chai et al, GRL, 2011
Averaged Vertical Velocity (m/day) (only positive)

- Eddy Box (0.96)
- Reference Box (0.53)
- OSP (0.05)
Dissolved Fe Concentration along the Cross Section
June 2007, a three-month old Haida eddy

Particulate Fe concentrations are ~ 3 x higher

Roy and Wells, 2011
Dissolved Iron Supplies to Upper Ocean (100m) (umol m$^{-2}$ day $^{-1}$)

Xiu, Palacz, Chai, et al., GRL, 2011

Langmann et al., JGR, 2010

Palacz et al., DSR II, 2011
Chlorophyll Anomaly

2008

July

Volcanic ash induced

Aug.

Chlorophyll Anomaly

Artificial iron fertilization

Sept.

Oct.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Modeling Impacts of Mesoscale Eddies on Biogeochemical Processes in South China Sea and Gulf of Alaska
Modeling Impacts of Mesoscale Eddies on Biogeochemical Processes in South China Sea and Gulf of Alaska

- Eddy characteristics in SCS and GoA (ROMS and Satellite) numbers (33 vs. 7), duration (60 vs. 280 days), 2/year
Modeling Impacts of Mesoscale Eddies on Biogeochemical Processes in South China Sea and Gulf of Alaska

- Eddy characteristics in SCS and GoA (ROMS and Satellite) numbers (33 vs. 7), duration (60 vs. 280 days), 2/year long-lived in GoA, locations & tracks, interannual variability
- Nutrients and phytoplankton respond to eddies
Modeling Impacts of Mesoscale Eddies on Biogeochemical Processes in South China Sea and Gulf of Alaska

- Eddy characteristics in SCS and GoA (ROMS and Satellite) numbers (33 vs. 7), duration (60 vs. 280 days), 2/year long-lived in GoA, locations & tracks, interannual variability
- Nutrients and phytoplankton respond to eddies depth issue, history of eddy, different phytoplankton groups
- Cyclonic eddies enhance transporting nutrients & production
Modeling Impacts of Mesoscale Eddies on Biogeochemical Processes in South China Sea and Gulf of Alaska

- Eddy characteristics in SCS and GoA (ROMS and Satellite) numbers (33 vs. 7), duration (60 vs. 280 days), 2/year long-lived in GoA, locations & tracks, interannual variability
- Nutrients and phytoplankton respond to eddies depth issue, history of eddy, different phytoplankton groups
- Cyclonic eddies enhance transporting nutrients & production 30% higher inside cyclonic eddies (1.8 vs. 1.4 mmol/m²/day)
- GoA anticyclonic eddies phytoplankton biomass elevated, decadal trend, iron profiles supplying iron (umol/m²/day): 1 (eddy) vs. 0.03 (dust)
Modeling Impacts of Mesoscale Eddies on Biogeochemical Processes in South China Sea and Gulf of Alaska

Prof. Fei CHAI (柴扉)
University of Maine

- Eddies and biological responses in the SCS
- Eddy transporting iron in Gulf of Alaska
- Iron fertilization with a Haida eddy - August 2012
Modeling Impacts of Mesoscale Eddies on Biogeochemical Processes in South China Sea and Gulf of Alaska

Prof. Fei CHAI (柴扉)
University of Maine

Mesoscale (10-100km) and Sub-mesoscale (1-10km) physical processes are important in regulating nutrient transport and biological productivity, and iron works