Arne Biastoch GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany

The Potential of Nested Ocean Modelling

Large-scale circulation in the Atlantic (cold and warm flows)

Mesoscale variability in the Atlantic (from satellite altimetry)

Mercator Grid Resolution Required to Resolve Baroclinic Deformation Radius with 2 Δx

Required horizontal resolution to simulate the mesoscale

Hallberg (Ocean Modell., 2013)

M. Scheinert (GEOMAR)

Why Not Regional Ocean Modelling?

Upper-ocean velocities (10-50m)

Gerdes et al. (Clim. Dyn. 2001)

b) Exp. 02

72°W

72°W

72°W

35.5

35

f) Levitus

d) Exp. 04

62°W

62°W

62°W

36.5

36

82°W

82°W

82°W

34.5

Gerdes et al. (Clim. Dyn. 2001)

AGRIF (Adapted Grid Refinement in FORTRAN)

- Both models are integrated simultaneously:
 - The nest grid gets information from the base grid at the boundary
 - The nest grid updates the base grid
- Available in NEMO and ROMS
- Individual parameters/parameterizations for base and nest
- Online interpolation of forcing fields

Nesting

Global Base Model

M. Scheinert (GEOMAR)

Biastoch et al. (CLIVAR Exchanges, 2014)

Online Simulation of Open Boundary Conditions Example: Indian Ocean

Online Simulation of Open Boundary Conditions

J. Durgadoo (GEOMAR)

Impact of SH Westerlies on Agulhas Current

Durgadoo et al. (J. Phys. Oceanogr., 2013)

+ + + + + + + + + + + + + + + +

The Agulhas System as Key Region of the Global Oceanic Circulation

Upstream Perturbations and Agulhas Leakage

Question: What regional physics controls the exchange between Indian and Atlantic?

 \rightarrow need high-resolution

1/10° nests in 1/2° base model (ORCA05)

Biastoch et al. (Geophys. Res. Lett., 2008)

Upstream Perturbations and Agulhas Leakage

Sea surface height variance from satellite altimetry and sensitivity experiments

HELMHOLTZ ASSOCIATION

Biastoch et al. (Geophys. Res. Lett., 2008)

Identification of Key Processes Example 1: Impact of Agulhas Mesoscale on the Largescale Circulation

+ + + + + + + + + + + + + + + +

Impact of Agulhas Mesoscale⁺ on the Large-scale Circulation⁺

<u>Goal</u>: isolate the net effect of the mesoscale Agulhas variability on the large-scale circulation \rightarrow need two-way nesting

Biastoch et al. (Nature, 2008)

Impact of Agulhas Mesoscale⁺ on the Large-scale Circulation⁺

Biastoch et al. (Nature, 2008)

Impact of Agulhas Mesoscale⁺ on the Large-scale Circulation⁺

Interannually filtered AMOC-difference at 1000m: Exp. with minus without Agulhas nest Signal propagation through Rossby and topographic shelf waves

Identification of Key Processes

Example 2: Impact of European Nordic Sea Overflow on Deep Western Boundary Current

+ + + + + + + + + + + + + + + + +

VIKING20

- 1/20° nest (30°-80°N)
 1/4° base (ORCA025)
- CORE-II (1948-2007) atmospheric forcing, interpolation on-the-fly
- Includes refinements of sea-ice and idealized tracers

Impact of European Nordic⁺Sea Overflow on Deep Western Boundary Current⁺

Section at 26°N in base model without... and with high-resolution nest

Biastoch et al. (CLIVAR Exchanges, 2014)

Interdisciplinary Applications

Example: Spreading of Glass Eels from the Sargasso Sea

Spreading of Glass Eeels + + + + +

Example pathways of "virtual" glass eels, released in the Sargasso See and advected to 25°W within 2 years in a 1/20° nested model (30°-80°N)

Soares, Biastoch et al. (Current Biology, 2013)

Spreading of Glass Eeels + + + + +

Soares, Biastoch et al. (Current Biology, 2013)

Summary

- Nesting is an online simulation of open boundary conditions <u>at all timescales</u>
- Flexible use (e.g., by varying nested domain)
- Allows to study impact of individual processes and regions (two-way nesting)
- Allows to introduce
 secondary nests

The Future?

INALT01 FESOM (1/10° nest in ORCA05, based on NEMO/AGRIF) (with regional focus on Agulhas dynamics)

SPACES Project by GEOMAR (Biastoch) and AWI (Wang)

