An analysis of the time-varying heat, salt and volume budget in an oceanic control volume

> Howard Freeland Institute of Ocean Sciences howard.freeland@dfo-mpo.gc.ca

Lots of floats are in the water, and lots of countries contributing

The mean circulation in the N. E. Pacific

The mean circulation in the N.E. Pacific

nd Oceans

The mean circulation in the N. E. Pacific

nd Oceans

et Océans

Results for volume divergence of the mean state

 $Divergence = < u_e > - < u_w > + < v_n > - < v_s >$

Relative to an integration pressure of 700 decibars:- $Divergence = 3.75 \times 10^6 m^3 / s = Area \times w_{700}$ Hence:- $w_{700} = 8.85 \times 10^{-7} m / s$

BUT – There are three components to this vertical velocity:
1) Diapycnal component
2) Isopycnal component
3) Heave

Results for <u>volume</u> divergence of the time-varying state

Relative to an integration pressure of 700 decibars:-

 $w_{700}(t) = (\langle u_e(t) \rangle - \langle u_w(t) \rangle + \langle v_n(t) \rangle - \langle v_s(t) \rangle) / Area$

Plausibility test #1

Plausibility test #2 (mean state salt divergence)

 $Divergence = < \overline{u}_e \overline{S}_e > - < \overline{u}_w \overline{S}_w > + < \overline{v}_n \overline{S}_n > - < \overline{v}_s \overline{S}_s >$

 $Salt - Divergence = +1.206 \times 10^8 psu.m^3 / sec$

Supply through the bottom surface = mean salinity on the 700 dbar surface x w_{700} (computed from volume budget) x Area

 $Supply = +1.256 \times 10^8 psu.m^3 / sec$

Plausibility test #3 (mean state heat divergence)

 $Divergence = < u_e H_e > - < u_w H_w > + < v_n H_n > - < v_s H_s >$

Where $H = \rho C_p T$ (C_p does vary with T and S)

Heat – *Divergence* = $+1.279 \times 10^{11} J / sec$

Supply through the bottom surface = mean $\rho C_p T$ on the 700 dbar surface x w₇₀₀ (computed from volume budget) x Area

 $Difference = +0.69 \times 10^{11} J / sec$

To maintain the steady state we need to supply through the top surface 17.2 W/m².

Does this fit other estimates?

Annual mean heat flux 1950-1990

FIG. 11. The annual mean net heat flux between 1950 and 1990. Contour interval is 10 W m⁻². Positive contours: solid line; negative contours: dashed line. Shaded region indicates where data was available.

Figure 11 from Moisan & Niiler, JPO 28, 401-421, 1998

Påches

Annual mean heat flux 1950-1990

FIG. 11. The annual mean net heat flux between 1950 and 1990. Contour interval is 10 W m⁻². Positive contours: solid line; negative contours: dashed line. Shaded region indicates where data was available.

Moisan & Niiler would suggest an expected annual average of about 25 ± 10 W/m²

Påches

Plausibility test 4: Relationship between w(t) and the time varying salt budget

Let
$$\overline{S(t)} = \frac{1}{V} \iiint S(x, y, P, t) dx.dy.dP$$

and $\overline{\overline{S'}}(t) = \overline{\overline{S}}(t) - \frac{1}{T} \int_{0}^{T} \overline{\overline{S}}(t).dt$
nen:- $\overline{\overline{S'}}(t) = \frac{A_0}{V} \int w_{700}(\tau) \overline{S}_{700}(\tau).d\tau$

()

Plausibility test 4: Relationship between w(t) and the time varying salt budget

Implications for the main pycnocline

Which implies a simple solution in deep water:-

$$\rho(z) = \rho_0 + \Delta \rho \exp(-z/z_0)$$

Where $z_0 = \kappa/w$

By least-squares fit to the centre of the box, between 300 dbars and 1000 dbars:-

 $z_0 = \kappa/w = 598$ decibars

$$K = 5.3 \times 10^{-4} \text{ m}^2/\text{s}$$

Conclusions

1) Argo observations can be used to estimate large-scale heat, salt and volume budgets.

- 2) The volume budget of the geostrophic flow field implies a net upwelling velocity of about 8.9 x 10⁻⁷ m/s, this is overwhelmingly diapycnal.
- 3) The vertical velocity is highly variable, but can account for the large scale variations in salt content.
- 4) This w estimate implies a vertical diffusivity about 4 to 5 times larger than previous estimates, but there are no direct measurements. This might change soon, thanks to Jody Klymak.

