An analysis of the time-varying heat, salt and volume budget in an oceanic control volume

Howard Freeland Institute of Ocean Sciences howard.freeland@dfo-mpo.gc.ca

Lots of floats are in the water, and lots of countries contributing

Can we determine the oceanic vertical velocity from this array? Argo
Fisheries Péches
and Oceans et Océans

The mean circulation in the N. E. Pacific

The mean circulation in the N. E. Pacific

The mean circulation in the N. E. Pacific

Results for volume divergence of the mean state

$$
\text { Divergence }=<\bar{u}_{e}>-<\bar{u}_{w}>+\left\langle\bar{v}_{n}>-\left\langle\bar{v}_{s}\right\rangle\right.
$$

Relative to an integration pressure of 700 decibars:-

$$
\begin{aligned}
& \text { Divergence }=3.75 \times 10^{6} \mathrm{~m}^{3} / \mathrm{s}=\text { Area } \times w_{700} \\
& \text { Hence:- } \quad w_{700}=8.85 \times 10^{-7} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

BUT - There are three components to this vertical velocity:

1) Diapycnal component
2) Isopycnal component
3) Heave

The three components of vertical velocity

Results for volume divergence of the time-varying state

Relative to an integration pressure of 700 decibars:-
$w_{700}(t)=\left(\left\langle u_{e}(t)\right\rangle-\left\langle u_{w}(t)\right\rangle+\left\langle v_{n}(t)\right\rangle-\left\langle v_{s}(t)\right\rangle\right) /$ Area

Plausibility test \#1

The vertical structure of w estimates is extremely plausible.

Plausibility test \#2 (mean state salt divergence)

Divergence $=<\bar{u}_{e} \bar{S}_{e}>-<\bar{u}_{w} \bar{S}_{w}>+<\bar{v}_{n} \bar{S}_{n}>-<\bar{v}_{s} \bar{S}_{s}>$

$$
\text { Salt-Divergence }=+1.206 \times 10^{8} \text { psu. } m^{3} / \text { sec }
$$

Supply through the bottom surface $=$ mean salinity on the 700 dbar surface $\times \mathrm{w}_{700}$ (computed from volume budget) \times Area

$$
\text { Supply }=+1.256 \times 10^{8} p s u . m^{3} / \mathrm{sec}
$$

Plausibility test \#3 (mean state heat divergence)

Divergence $=<\bar{u}_{e} \bar{H}_{e}>-<\bar{u}_{w} \bar{H}_{w}>+<\bar{v}_{n} \bar{H}_{n}>-<\bar{v}_{s} \bar{H}_{s}>$
Where $H=\rho C_{p} \top\left(C_{p}\right.$ does vary with T and $\left.S\right)$

$$
\text { Heat }- \text { Divergence }=+1.279 \times 10^{11} \mathrm{~J} / \mathrm{sec}
$$

Supply through the bottom surface $=$ mean $\mathrm{\rho C}_{\mathrm{p}} \mathrm{T}$ on the 700 dbar surface $\times \mathrm{w}_{700}$ (computed from volume budget) \times Area

$$
\text { Difference }=+0.69 \times 10^{11} \mathrm{~J} / \mathrm{sec}
$$

To maintain the steady state we need to supply through the top surface $17.2 \mathrm{~W} / \mathrm{m}^{2}$.

Does this fit other estimates?

Annual mean heat flux 1950-1990

Fig. 11. The annual mean net heat flux between 1950 and 1990. Contour interval is $10 \mathrm{~W} \mathrm{~m}^{-2}$. Positive contours: solid line; negative contours: dashed line. Shaded region indicates where data was available.

Figure 11 from Moisan \& Niiler, JPO 28, 401-421, 1998

Annual mean heat flux 1950-1990

Fig. 11. The annual mean net heat flux between 1950 and 1990. Contour interval is $10 \mathrm{~W} \mathrm{~m}^{-2}$. Positive contours: solid line; negative contours: dashed line. Shaded region indicates where data was available.

Moisan \& Niiler would suggest an expected annual average of about $25 \pm 10 \mathrm{~W} / \mathrm{m}^{2}$

Plausibility test 4: Relationship between w(t) and the time varying salt budget

Let $\overline{\overline{S(t)}}=\frac{1}{V} \iiint S(x, y, P, t) d x \cdot d y \cdot d P$
and $\quad \overline{\bar{S}}(t)=\overline{\bar{S}}(t)-\frac{1}{T} \int_{0}^{T} \overline{\bar{S}}(t) . d t$
Then:- $\overline{\bar{S}}^{\prime}(t)=\frac{A_{0}}{V} \int_{0}^{t} w_{700}(\tau) \bar{S}_{700}(\tau) . d \tau$

Plausibility test 4: Relationship between w(t) and the time varying salt budget

Fisheries Péches
and Oceans et Oceans

Implications for the main pycnocline

$$
w \frac{\partial \rho}{\partial z}=\kappa \frac{\partial^{2} \rho}{\partial z^{2}}
$$

Which implies a simple solution in deep water:-

$$
\rho(z)=\rho_{0}+\Delta \rho \exp \left(-z / z_{0}\right)
$$

Where $z_{0}=k / w$
By least-squares fit to the centre of the box, between 300 dbars and 1000 dbars:-
$\mathrm{z}_{0}=\mathrm{k} / \mathrm{w}=598$ decibars
$\mathrm{K}=5.3 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$

Conclusions

1) Argo observations can be used to estimate large-scale heat, salt and volume budgets.
2) The volume budget of the geostrophic flow field implies a net upwelling velocity of about $8.9 \times 10^{-7} \mathrm{~m} / \mathrm{s}$, this is overwhelmingly diapycnal.
3) The vertical velocity is highly variable, but can account for the large scale variations in salt content.
4) This westimate implies a vertical diffusivity about 4 to 5 times larger than previous estimates, but there are no direct measurements. This might change soon, thanks to Jody Klymak.
