

Predicting recruitment of anchovy based on oceanographic and reproductive conditions in the southern waters of Korea

Jinyeong Kim¹, Heeyong Kim¹ and Sukgeun Jung²

 Southwest Sea Fisheries Institute, NFRDI, Yeosu, Cheollanam-do, 556-823, R Korea.
E-mail: jiykim@nfrdi.go.kr
School of Marine Biomedical Sciences, Jeju National University, Jeju, 690-756, R Korea

Composition of size group in the anchovy drag net fishery

Yearly variation of CPUE for the early juvenile (below 4 cm total length) caught by anchovy drag net fishery during July in Korean southern waters,

Outline

- Fluctuation of oceanographic data and anchovy feeding condition in spring related to the climate change were compared to the anchovy recruitment in summer.
- Recruitment in summer was applied to multivariate analyses with times-series data of water temperature, salinity and copepod density during spawning season from 1992 to 2009.
- Climate change : Siberian wind, Heavy rain and snow, long winter season

Anchovy spawning season and recruitment time to the fishing grounds in southern waters of Korea

ring a construction of the first structure birth data is the first day of and month it would be service defined from the service difference of the service data and from the service difference of the service data and the

Current system affecting to the recruitment of larval anchovy (Choo, 2002)

Map showing study area and typical stations of oceanography observation

Spatial and vertical temperature distribution during April and June, 2008

Monthly mean temperature in sea surface and 50 m depth layer in the southern waters of Korea

Yearly variation of mean salinity in the southern waters of Korea during February, April, June of 1992-2009

Monthly mean copepods density in the southern waters of Korea

Coefficient of correlation between anchovy recruitment and

environmental factors in the southern waters of Korea

			Coefficientofcorrelation (Pearson)	Sig. (paired)
S a lin ity	1 O m	April	0.477	0.045
		June	0.435	0.071
	50 m	April	0.518	0.028
		June	0.360	0.143
Tem perature	1 O m	April	0.112	0.658
		June	-0.397	0.103
	50 m	April	0.086	0.733
		June	-0.018	0.943
Temperature front		April	-0.402	0.098
		June	-0.504	0.033
Therm oc line		June	-0.551	0.018
Copepods Density		April	0.561	0.016
		June	0.034	0.893

Model summary (Coefficients) of Linear regression with significant factor scores

Model	Unstandard ized		Standardized	t	Sig.
	Coefficient		Coefficient		
	В	Std.Error	В		
1 A constant	85.6567	17.1012		5.0088	0.0001
(REGR factor score 3)	-52.5954	17.5970	-0.5986	-2.9889	0.0087
2 A constant	85.6567	14.7766		5.7968	0.0000
REGR factor score 3	-52.5954	15.2050	-0.5986	-3.4591	0.0035
REGR factor score 1	38.5563	15.2050	0.4388	2.5358	0.0228
dependent variable :	CPUE of	larval ancho	vy		

3. Temperature (June), Front (June), Thermocline (June)

1. Salinity (April10m and 50m depth / June 10m and 50m depth)

Model summary (ANOVA and coefficients) of Linear regression with significant factor scores

Model		Sum of	df	Mean Square	F	Sig.
		Square				
1	inear regression	47026.61	1	47026.61	8.9334	0.0087
(residuals	84226.08	16	5264.13		
	Total	131252.69	17			
2	inear regression	72298.63	2	36149.32	9.1977	0.0025
	residuals	58954.06	15	3930.27		
	Total	131252.69	17			
1 P	Prediction: (a Co	onstant), REGR	factor	score for analy	vsis 3 ,	
2 P	Prediction: (a Co	onstant), REGR	factor	score for analy	vsis 3 and	analysis
dependent variable : CPUE of larval anchovy						

3. Temperature (June), Front (June), Thermocline (June)

1. Salinity (April10m and 50m depth / June 10m and 50m depth)

Effect of climate change and oceanographic factors to the recruitment of anchovy

Conclusion

- Model summary (ANOVA and coefficients) of Linear regression with significant factor scores suggested higher salinity and lower thermocline and front in the southern area of Korea could lead to higher recruitment.
- Condition factor and gonad somatic index of anchovy collected in the spawning grounds was positively correlated with monthly-averaged copepod density, suggesting bottom-up controls.
- Climate-driven fluctuations in river-water discharge and oceanographic conditions on primary and secondary productivity were related anchovy recruitment in southern Korean waters.

Thank you

