PICES-2011 Annual Meeting MONITOR/POC/FUTURE Topic Session "How well do our models really work and what data do we need to check and improve them?"

Decadal variability of the Kuroshio/Oyashio Extension fronts, their atmospheric influences, and implications to prediction

Bunmei Taguchi Earth Simulator Center, JAMSTEC

in collaboration with

Hisashi Nakamura^{2,3} Masami Nonaka³, Bo Qiu⁴ Nobu Komori^I, Akira Kuwano-Yoshida^I, Hide Sasaki^I, Koutarou Takaya³, Niklas Schneider⁴, and Shang-Ping Xie⁴

I. ESC/JAMSTEC, 2. Univ. of Tokyo, 3. RIGC/JAMSTEC, 4. UH

19 October, 2011

Official Conference Hall, Khabarovsk, Russia

PICES-2011 Annual Meeting MONITOR/POC/FUTURE Topic Session "How well do our models really work and what data do we need to check and improve them?"

Decadal variability of the Kuroshio/Oyashio Extension fronts, their atmospheric influences, and implications to prediction

Bunmei Taguchi Earth Simulator Center, JAMSTEC

Outline:

1. Decadal variability of Kuroshio/Oyashio extension (KOE) fronts.

One-way prediction of the KE front speed: wind-forced Rossby wave propagations.

2. Large-scale atmospheric response to KOE frontal variability.

2-way prediction of the KE frontal variability considering atmospheric feedback.

19 October, 2011

Official Conference Hall, Khabarovsk, Russia

Pacific Decadal Variability

Large interannual-to-decadal variability is confined within narrow latitudinal bands of KOE fronts

Large interannual-to-decadal variability is confined within narrow latitudinal bands of KOE fronts

Large- vs. frontal-scale variability (SSH; 2nd mode)

Large- vs. frontal-scale variability (SSH; 2nd mode)

Frontal-scale recirculation variations give rise to KE speed change.
Large-scale RWs are transformed into latitudinally narrow jet structures.

•KE speed variations can be traced back to NPGO. (Ceballos et al. 2009)

Potential predictability of the KE jet speed variability

Lagged correlation between anomalous KE jet speed and SSHa (60-year OFES hindcast)

Influence of the KOE fronts on the atmosphere

Regional atmospheric model study Taguchi et al. (2009, JC)

Influence of the KOE fronts on the atmosphere

Regional atmospheric model study Taguchi et al. (2009, JC)

Smoothed SST front substantially underestimates atmospheric storm track activity.

2-way prediction of the KE dynamical state

2-way prediction of the KE dynamical state

SST anomalies induced by frontal shift in subarctic frontal zone (SAFZ): Historical Obs & CGCM

•ICOADS SST (2°x2°, 1959-2006) Courtesy of H. Tokinaga (IPRC)

•CFES (CGCM for Earth Simulator) Ocn-Res 0.5°, 120-year integration

Atmospheric response (Jan) to SSTa (Nov) in SAFZ

Atmospheric response (Jan) to SSTa (Nov) in SAFZ

Wind stress curl response patterns

NCEP (1977-2010)

NCEP (1959-2006)

Summary

- Wind-forced Rossby wave propagations can be exploited to predict with a lead time about 3 years KE jet speed variability, an important forcing factor for natural mortality of infant sardine.
- 2-way prediction considering wind forcing due to feedback from the KE could provide additional multi-year predictive skill.
- It has been and still is a long-standing problem whether such 2-way interaction exists between extra-tropical ocean and atmosphere, with large-scale atmospheric response to the ocean being one of the biggest uncertainties.