Vertical and spatial distribution patterns of transparent exopolymer (TEP) in the East Sea during summer 2009

TaeKeun Rho, Tongsup Lee, Hyunduck Jeon, Dong-Jin Kang and Kyung-Ryul Kim

TEP (Transparent Exopolymer Particles)

Phytoplankton and bacteria

Enhance POC fluxes

Enhanced TEP production in High CO₂ ocean

Arrigo (2007)

TEP in the acidic ocean

decreasing the TEP driven aggregation and sedimentation

Mari (2008)

Fast acidification in the East Sea

Kim et al. (in prep)

Study objective

To quantify the amount of TEP in the East Sea

To understand the distribution of TEP and its relationship to physical, chemical, and biological properties of water mass

Study area

Korea-Russia Joint Cruise (2009. 7.9-19) in the East Sea (R/V Lavrentyev)

pH, Total Alkalinity(TA) Chl-a(total and size fractionation) TEP

TEP analysis-Colorimetric method

Physical properties at 10m depth

A: T> 20 °C and S<33.7 (warm and saline surface water)

B: 16 °C<T< 20 °C and S~ 33.7 (transition zone)

C: T< 12 °C and S> 32.7 (cold and less saline surface water)

Chemical and biological properties

A: TCO₂< 2100 and Chl_{int} <30 B: 2110< TCO₂< 2140 and 30 < Chl_{int}<45 C: TCO₂> 2140 and Chl_{int}>45

TEP at 10m depth and integrated to 75 m depth

A: 50<TEP< 90 and TEP_{int} ~1600 B: TEP< 20 and 1600< TEP_{int}<2000 C: 40<TEP<60 and 3000<TEP_{int}<4500

Vertical distribution of physical properties

TEP Production by biological processes

Study areas		Depth	Bloom condition	ТЕР	TEP/Chl a	References
East Sea (Japan Basin)		0 – 75m	Non-bloom	43 (0-338)	125 (0-1187)	This Study
S U T H E R N O C E A N	Antarctic Peninsula	0-200m	Non-bloom	15.4 (0-48.9)	40.9 (0-1492)	Ortega-Retuerta <i>et al.</i> (2009)
	Anvers Island	Surface		207 (10-407)	123 (12-708)	Passow (pers.comm.)
	Ross Sea	0-150 m	Bloom. Time series	308 (0-2800)	89.1	Hong <i>et al.</i> (1997)
	Bransfield Strait	0-100m	Non-bloom	57 (0-346)	51.0	Corzo <i>et al.</i> (2005)
	Gerlache Strait	0-100m	Non-bloom	0-283	32.7	Corzo <i>et al.</i> (2005)
	Drake Passage	0-100m	Non-bloom	0-157	29.9	Corzo <i>et al.</i> (2005)
Mediterranean Sea		0-200m	Non-bloom	21 (5-94)	453 (0-12386)	Ortega-Retuerta unpubl.
sub-Arctic Pacific			Bloom at a coastal site	901 - 1442	125 - 144	Ramaiah <i>et al.</i> (2001)
Baltic Sea			Non-bloom	83 (145 – 322)	130	Engel <i>et al.</i> (2002)
Northeast Atlantic		10-50m	Different bloom stages	28.5 (10-110)	49-104	Engel (2004)
Strait of Gibraltar		0-200m	Different bloom stages	25-205	42-2708	Prieto <i>et al.</i> (2006)

18

Summary

I. Positive relationship between chlorophyll-a and TEP concentration

II. There was no trend between pH and TEP concentrations within the euphotic layer

III. There was no specific relationship between TCO2 and TEP concentration within the euphotic layer

IV. TEP concentrations ranged about 0~338 μ g Xeq. L⁻¹ with mean value of 43 μ g Xeq. L⁻¹

