PICES 21th (2012) Annual Meeting, BIO-P-8580

Hiroshima, Japan, Oct. 19,

2011

Relationships of interannual variability in SST and phytoplankton blooms to giant jellyfish (*Nemopilema nomurai*) outbreaks in the Yellow and East China Seas(YECS)

Yongjiu Xu, Joji Ishizaka, Hisashi Yamaguchi, Shengqiang Wang

HyARC/Nagoya University

Jellyfish outbreaks

More frequent outbreaks in 21 century

Pre-jellyfish year, PJY: Absence of outbreaks Jellyfish year, JY: Jellyfish outbreaks

Absence of outbreaks

http://jsnfri.fra.affrc.go.jp/Kurage/kurage_top.html

Non-jellyfish year,

Jellyfish distribution

Three hypotheses

1.Warming/cooling of seawater

Favorable/unfavorable

2.High/low eutrophication level

Favorable/unfavorable for outbreaks

3.Match/mismatch

Between time to reach SST 15 °C and timing of phytoplankton blooms

Gaussian fitting for phytoplankton blooms

Methods

1.Wilcoxon rank-sum (W-R) test:

SST difference among PJY, JY and NJY •SST(Weekly/monthly): 1998-2010 (AVHRR, MODIS)

2.Correlation analysis:

The long-term trend in average Chl-a and peak Chl-a
•New Chl-a datasets(weekly): 1998-2010 (SeaWiFS, MODIS) (Siswanto et al. JO, 2011; Xu et al, submitted)

3.Match/mismatch

Timings of blooms and timing of SST reaching 15°C (strobilation)

13-years satellite time series

Mismatches

bloom regions

Matches and Eutrophication

Locations	Chl-a pattern	13 years increasing trend	13 years increasing trend in
		in average Chl-a	Peak Chl-a
BS	Summer bloom	55% (r = 0.884, p < 0.05), with 19% from PJY to JY	80% (r = 0.882, p < 0.05), with 31% from PJY to JY
MNYS	Spring bloom		
CSYS	Summer bloom	35.8% (r = 0.831, p < 0.05), with 14% from PJY to JY	60% (r = 0.55, p < 0.05), with 18% from PJY to JY
MSYS	Spring Bloom	18% (r = 0.61, p < 0.05), with 4% from PJY to JY	55% (r = 0.66, p < 0.05), with 8.2% from PJY to JY
KSYS	Summer bloom	35.7% (r = 0.85, p < 0.05), with 14.5% from PJY to JY	38% (r = 0.75, p < 0.05), with 26% from PJY to JY
YRE	Summer bloom	9.5% without significant trend, with 5% from PJY to JY	8-10% without significant trend, with 5% from PJY to JY

Eutrophication were observed in most of coast regions and MSYS region

- 1. High eutrophication level and the warming of seawater favored the long-term increase in *N. nomurai* outbreaks in JY
- 2. Lower SST was an important factor preventing the outbreaks of jellyfish in NJY
- 3. Lower SST did not cause mismatch. It may directly affect the survival rate of jellyfish larvae
- 4. Mismatch maybe the main factor to cause absence of outbreaks in middle regions
- Match in coastal regions and mismatch in mid regions were observed in all the years, indicating coastal regions provide better environments than mid regions for jellyfish ephyrae