Tropical Pacific OMZ during late 20th century

Taka Ito, Georgia Tech Curtis Deutsch, UCLA

PICES Annual Meeting 2012

Motivation

Keeling et al. (2010)

Motivation

Keeling et al. (2010)

Motivation

What are the underlying mechanism for the multi-decadal variability?

Global ocean biogeochemistry model

- MITgcm: global 1° x 1° resolution
 - KPP mixed layer
 - Gent-McWilliams (1990) scheme
- Simple biogeochemistry
 - Modified OCMIP-2 scheme
- Climatological spin-up for 2,000 years
- 40-year hindcast simulation using

German ECCO circulation (1962-2002)

Global ocean biogeochemistry model

Expansion of OMZ and decadal variability

- Tropical Pacific O₂ inventory (20°S-20°N, 185m-510m, 1962-2002)
- First EOF
 - Basin-scale dipole pattern
 - Multi-decadal timescale
- Second EOF
 - Focused on eastern tropical Pacific
 - Decadal timescale
- Leading two EOFs > 50% variance

Expansion of OMZ and decadal variability

ENSO cycle and O₂ Compensations

Growth = Physical supply - Respiration

Growth = Physical supply - Respiration

Growth = Physical supply - Respiration

A conceptual model

$$\frac{d}{dt}O_2' = -\lambda O_2' + \underline{f_{ADV}(t)} - \underline{f_{OUR}(t)}$$

- Memory of thermocline waters
 - \rightarrow Markov process
 - $\rightarrow \lambda$: lag-1 autocorrelation
- *f_{ADV}*(t) and *f_{OUR}*(t) can be diagnosed from GCM
 Somewhat correlated with ENSO

A conceptual model

Advection only

Resolved transport convergence

Respiration only

Volume integrated OUR

The net effect is dominated by the respiration

The Mechanism: Upwelling and AOU

Deutsch et al. (2011)

- Colder and increased O_{2sat}
- Stronger lateral O₂ supply
- Increased biological O₂ consumption
 - \rightarrow OMZ expansion

- Warmer and decreased O_{2sat}
- Weaker lateral O₂ supply
- Decreased biological O₂ consumption
 → OMZ contraction

Take home points

• OMZ variability involves complex interactions

 A residual between biological O₂ consumption, heat content and circulation change

- AOU dominates
 - On ENSO timescale, OMZ expands during La Nina
- Decadal variability
 - Finite memory of thermocline water
 - PDO-like behavior due to integrated ENSO signals